Core Timing: Rework Core Timing to run all cores evenly.
This commit is contained in:
parent
e664c24355
commit
555866f8dc
|
@ -116,7 +116,7 @@ public:
|
||||||
num_interpreted_instructions = 0;
|
num_interpreted_instructions = 0;
|
||||||
}
|
}
|
||||||
u64 GetTicksRemaining() override {
|
u64 GetTicksRemaining() override {
|
||||||
return std::max(parent.system.CoreTiming().GetDowncount(), 0);
|
return std::max<s64>(parent.system.CoreTiming().GetDowncount(), 0LL);
|
||||||
}
|
}
|
||||||
u64 GetCNTPCT() override {
|
u64 GetCNTPCT() override {
|
||||||
return Timing::CpuCyclesToClockCycles(parent.system.CoreTiming().GetTicks());
|
return Timing::CpuCyclesToClockCycles(parent.system.CoreTiming().GetTicks());
|
||||||
|
|
|
@ -156,7 +156,7 @@ void ARM_Unicorn::Run() {
|
||||||
if (GDBStub::IsServerEnabled()) {
|
if (GDBStub::IsServerEnabled()) {
|
||||||
ExecuteInstructions(std::max(4000000, 0));
|
ExecuteInstructions(std::max(4000000, 0));
|
||||||
} else {
|
} else {
|
||||||
ExecuteInstructions(std::max(system.CoreTiming().GetDowncount(), 0));
|
ExecuteInstructions(std::max<s64>(system.CoreTiming().GetDowncount(), 0LL));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -85,24 +85,16 @@ void Cpu::RunLoop(bool tight_loop) {
|
||||||
// instead advance to the next event and try to yield to the next thread
|
// instead advance to the next event and try to yield to the next thread
|
||||||
if (Kernel::GetCurrentThread() == nullptr) {
|
if (Kernel::GetCurrentThread() == nullptr) {
|
||||||
LOG_TRACE(Core, "Core-{} idling", core_index);
|
LOG_TRACE(Core, "Core-{} idling", core_index);
|
||||||
|
core_timing.Idle();
|
||||||
if (IsMainCore()) {
|
core_timing.Advance();
|
||||||
// TODO(Subv): Only let CoreTiming idle if all 4 cores are idling.
|
|
||||||
core_timing.Idle();
|
|
||||||
core_timing.Advance();
|
|
||||||
}
|
|
||||||
|
|
||||||
PrepareReschedule();
|
PrepareReschedule();
|
||||||
} else {
|
} else {
|
||||||
if (IsMainCore()) {
|
|
||||||
core_timing.Advance();
|
|
||||||
}
|
|
||||||
|
|
||||||
if (tight_loop) {
|
if (tight_loop) {
|
||||||
arm_interface->Run();
|
arm_interface->Run();
|
||||||
} else {
|
} else {
|
||||||
arm_interface->Step();
|
arm_interface->Step();
|
||||||
}
|
}
|
||||||
|
core_timing.Advance();
|
||||||
}
|
}
|
||||||
|
|
||||||
Reschedule();
|
Reschedule();
|
||||||
|
|
|
@ -15,7 +15,7 @@
|
||||||
|
|
||||||
namespace Core::Timing {
|
namespace Core::Timing {
|
||||||
|
|
||||||
constexpr int MAX_SLICE_LENGTH = 20000;
|
constexpr int MAX_SLICE_LENGTH = 10000;
|
||||||
|
|
||||||
struct CoreTiming::Event {
|
struct CoreTiming::Event {
|
||||||
s64 time;
|
s64 time;
|
||||||
|
@ -38,10 +38,14 @@ CoreTiming::CoreTiming() = default;
|
||||||
CoreTiming::~CoreTiming() = default;
|
CoreTiming::~CoreTiming() = default;
|
||||||
|
|
||||||
void CoreTiming::Initialize() {
|
void CoreTiming::Initialize() {
|
||||||
downcount = MAX_SLICE_LENGTH;
|
for (std::size_t core = 0; core < num_cpu_cores; core++) {
|
||||||
|
downcounts[core] = MAX_SLICE_LENGTH;
|
||||||
|
time_slice[core] = MAX_SLICE_LENGTH;
|
||||||
|
}
|
||||||
slice_length = MAX_SLICE_LENGTH;
|
slice_length = MAX_SLICE_LENGTH;
|
||||||
global_timer = 0;
|
global_timer = 0;
|
||||||
idled_cycles = 0;
|
idled_cycles = 0;
|
||||||
|
current_context = 0;
|
||||||
|
|
||||||
// The time between CoreTiming being initialized and the first call to Advance() is considered
|
// The time between CoreTiming being initialized and the first call to Advance() is considered
|
||||||
// the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
|
// the slice boundary between slice -1 and slice 0. Dispatcher loops must call Advance() before
|
||||||
|
@ -110,7 +114,7 @@ void CoreTiming::UnscheduleEvent(const EventType* event_type, u64 userdata) {
|
||||||
u64 CoreTiming::GetTicks() const {
|
u64 CoreTiming::GetTicks() const {
|
||||||
u64 ticks = static_cast<u64>(global_timer);
|
u64 ticks = static_cast<u64>(global_timer);
|
||||||
if (!is_global_timer_sane) {
|
if (!is_global_timer_sane) {
|
||||||
ticks += slice_length - downcount;
|
ticks += time_slice[current_context] - downcounts[current_context];
|
||||||
}
|
}
|
||||||
return ticks;
|
return ticks;
|
||||||
}
|
}
|
||||||
|
@ -120,7 +124,7 @@ u64 CoreTiming::GetIdleTicks() const {
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::AddTicks(u64 ticks) {
|
void CoreTiming::AddTicks(u64 ticks) {
|
||||||
downcount -= static_cast<int>(ticks);
|
downcounts[current_context] -= static_cast<s64>(ticks);
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::ClearPendingEvents() {
|
void CoreTiming::ClearPendingEvents() {
|
||||||
|
@ -141,22 +145,36 @@ void CoreTiming::RemoveEvent(const EventType* event_type) {
|
||||||
|
|
||||||
void CoreTiming::ForceExceptionCheck(s64 cycles) {
|
void CoreTiming::ForceExceptionCheck(s64 cycles) {
|
||||||
cycles = std::max<s64>(0, cycles);
|
cycles = std::max<s64>(0, cycles);
|
||||||
if (downcount <= cycles) {
|
if (downcounts[current_context] <= cycles) {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
// downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int
|
// downcount is always (much) smaller than MAX_INT so we can safely cast cycles to an int
|
||||||
// here. Account for cycles already executed by adjusting the g.slice_length
|
// here. Account for cycles already executed by adjusting the g.slice_length
|
||||||
slice_length -= downcount - static_cast<int>(cycles);
|
slice_length -= downcounts[current_context] - static_cast<int>(cycles);
|
||||||
downcount = static_cast<int>(cycles);
|
downcounts[current_context] = static_cast<int>(cycles);
|
||||||
|
}
|
||||||
|
|
||||||
|
std::optional<u64> CoreTiming::NextAvailableCore(const s64 needed_ticks) const {
|
||||||
|
const u64 original_context = current_context;
|
||||||
|
u64 next_context = (original_context + 1) % num_cpu_cores;
|
||||||
|
while (next_context != original_context) {
|
||||||
|
if (time_slice[next_context] >= needed_ticks) {
|
||||||
|
return {next_context};
|
||||||
|
} else if (time_slice[next_context] >= 0) {
|
||||||
|
return {};
|
||||||
|
}
|
||||||
|
next_context = (next_context + 1) % num_cpu_cores;
|
||||||
|
}
|
||||||
|
return {};
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::Advance() {
|
void CoreTiming::Advance() {
|
||||||
std::unique_lock<std::mutex> guard(inner_mutex);
|
std::unique_lock<std::mutex> guard(inner_mutex);
|
||||||
|
|
||||||
const int cycles_executed = slice_length - downcount;
|
const int cycles_executed = time_slice[current_context] - downcounts[current_context];
|
||||||
|
time_slice[current_context] = std::max<s64>(0, downcounts[current_context]);
|
||||||
global_timer += cycles_executed;
|
global_timer += cycles_executed;
|
||||||
slice_length = MAX_SLICE_LENGTH;
|
|
||||||
|
|
||||||
is_global_timer_sane = true;
|
is_global_timer_sane = true;
|
||||||
|
|
||||||
|
@ -173,24 +191,40 @@ void CoreTiming::Advance() {
|
||||||
|
|
||||||
// Still events left (scheduled in the future)
|
// Still events left (scheduled in the future)
|
||||||
if (!event_queue.empty()) {
|
if (!event_queue.empty()) {
|
||||||
slice_length = static_cast<int>(
|
s64 needed_ticks = std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH);
|
||||||
std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH));
|
const auto next_core = NextAvailableCore(needed_ticks);
|
||||||
|
if (next_core) {
|
||||||
|
downcounts[*next_core] = needed_ticks;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
downcount = slice_length;
|
downcounts[current_context] = time_slice[current_context];
|
||||||
|
}
|
||||||
|
|
||||||
|
void CoreTiming::ResetRun() {
|
||||||
|
for (std::size_t core = 0; core < num_cpu_cores; core++) {
|
||||||
|
downcounts[core] = MAX_SLICE_LENGTH;
|
||||||
|
time_slice[core] = MAX_SLICE_LENGTH;
|
||||||
|
}
|
||||||
|
current_context = 0;
|
||||||
|
// Still events left (scheduled in the future)
|
||||||
|
if (!event_queue.empty()) {
|
||||||
|
s64 needed_ticks = std::min<s64>(event_queue.front().time - global_timer, MAX_SLICE_LENGTH);
|
||||||
|
downcounts[current_context] = needed_ticks;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void CoreTiming::Idle() {
|
void CoreTiming::Idle() {
|
||||||
idled_cycles += downcount;
|
idled_cycles += downcounts[current_context];
|
||||||
downcount = 0;
|
downcounts[current_context] = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
|
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
|
||||||
return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE};
|
return std::chrono::microseconds{GetTicks() * 1000000 / BASE_CLOCK_RATE};
|
||||||
}
|
}
|
||||||
|
|
||||||
int CoreTiming::GetDowncount() const {
|
s64 CoreTiming::GetDowncount() const {
|
||||||
return downcount;
|
return downcounts[current_context];
|
||||||
}
|
}
|
||||||
|
|
||||||
} // namespace Core::Timing
|
} // namespace Core::Timing
|
||||||
|
|
|
@ -7,6 +7,7 @@
|
||||||
#include <chrono>
|
#include <chrono>
|
||||||
#include <functional>
|
#include <functional>
|
||||||
#include <mutex>
|
#include <mutex>
|
||||||
|
#include <optional>
|
||||||
#include <string>
|
#include <string>
|
||||||
#include <unordered_map>
|
#include <unordered_map>
|
||||||
#include <vector>
|
#include <vector>
|
||||||
|
@ -104,7 +105,19 @@ public:
|
||||||
|
|
||||||
std::chrono::microseconds GetGlobalTimeUs() const;
|
std::chrono::microseconds GetGlobalTimeUs() const;
|
||||||
|
|
||||||
int GetDowncount() const;
|
void ResetRun();
|
||||||
|
|
||||||
|
s64 GetDowncount() const;
|
||||||
|
|
||||||
|
void SwitchContext(u64 new_context) {
|
||||||
|
current_context = new_context;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool CurrentContextCanRun() const {
|
||||||
|
return time_slice[current_context] > 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::optional<u64> NextAvailableCore(const s64 needed_ticks) const;
|
||||||
|
|
||||||
private:
|
private:
|
||||||
struct Event;
|
struct Event;
|
||||||
|
@ -112,10 +125,15 @@ private:
|
||||||
/// Clear all pending events. This should ONLY be done on exit.
|
/// Clear all pending events. This should ONLY be done on exit.
|
||||||
void ClearPendingEvents();
|
void ClearPendingEvents();
|
||||||
|
|
||||||
|
static constexpr u64 num_cpu_cores = 4;
|
||||||
|
|
||||||
s64 global_timer = 0;
|
s64 global_timer = 0;
|
||||||
s64 idled_cycles = 0;
|
s64 idled_cycles = 0;
|
||||||
int slice_length = 0;
|
s64 slice_length = 0;
|
||||||
int downcount = 0;
|
std::array<s64, num_cpu_cores> downcounts{};
|
||||||
|
// Slice of time assigned to each core per run.
|
||||||
|
std::array<s64, num_cpu_cores> time_slice{};
|
||||||
|
u64 current_context = 0;
|
||||||
|
|
||||||
// Are we in a function that has been called from Advance()
|
// Are we in a function that has been called from Advance()
|
||||||
// If events are scheduled from a function that gets called from Advance(),
|
// If events are scheduled from a function that gets called from Advance(),
|
||||||
|
|
|
@ -6,6 +6,7 @@
|
||||||
#include "core/arm/exclusive_monitor.h"
|
#include "core/arm/exclusive_monitor.h"
|
||||||
#include "core/core.h"
|
#include "core/core.h"
|
||||||
#include "core/core_cpu.h"
|
#include "core/core_cpu.h"
|
||||||
|
#include "core/core_timing.h"
|
||||||
#include "core/cpu_core_manager.h"
|
#include "core/cpu_core_manager.h"
|
||||||
#include "core/gdbstub/gdbstub.h"
|
#include "core/gdbstub/gdbstub.h"
|
||||||
#include "core/settings.h"
|
#include "core/settings.h"
|
||||||
|
@ -122,13 +123,19 @@ void CpuCoreManager::RunLoop(bool tight_loop) {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
for (active_core = 0; active_core < NUM_CPU_CORES; ++active_core) {
|
auto& core_timing = system.CoreTiming();
|
||||||
cores[active_core]->RunLoop(tight_loop);
|
core_timing.ResetRun();
|
||||||
if (Settings::values.use_multi_core) {
|
bool keep_running{};
|
||||||
// Cores 1-3 are run on other threads in this mode
|
do {
|
||||||
break;
|
keep_running = false;
|
||||||
|
for (active_core = 0; active_core < NUM_CPU_CORES; ++active_core) {
|
||||||
|
core_timing.SwitchContext(active_core);
|
||||||
|
if (core_timing.CurrentContextCanRun()) {
|
||||||
|
cores[active_core]->RunLoop(tight_loop);
|
||||||
|
}
|
||||||
|
keep_running |= core_timing.CurrentContextCanRun();
|
||||||
}
|
}
|
||||||
}
|
} while (keep_running);
|
||||||
|
|
||||||
if (GDBStub::IsServerEnabled()) {
|
if (GDBStub::IsServerEnabled()) {
|
||||||
GDBStub::SetCpuStepFlag(false);
|
GDBStub::SetCpuStepFlag(false);
|
||||||
|
|
Reference in New Issue