yuzu-emu
/
yuzu-mainline
Archived
1
0
Fork 0

Core: Implement a Host Timer.

This commit is contained in:
Fernando Sahmkow 2020-02-05 19:12:27 -04:00
parent be320a9e10
commit 62e35ffc0e
5 changed files with 295 additions and 0 deletions

View File

@ -547,6 +547,8 @@ add_library(core STATIC
hle/service/vi/vi_u.h
hle/service/wlan/wlan.cpp
hle/service/wlan/wlan.h
host_timing.cpp
host_timing.h
loader/deconstructed_rom_directory.cpp
loader/deconstructed_rom_directory.h
loader/elf.cpp

View File

@ -49,6 +49,11 @@ s64 nsToCycles(std::chrono::nanoseconds ns) {
return (Hardware::BASE_CLOCK_RATE * ns.count()) / 1000000000;
}
u64 nsToClockCycles(std::chrono::nanoseconds ns) {
const u128 temporal = Common::Multiply64Into128(ns.count(), CNTFREQ);
return Common::Divide128On32(temporal, 1000000000).first;
}
u64 CpuCyclesToClockCycles(u64 ticks) {
const u128 temporal = Common::Multiply64Into128(ticks, Hardware::CNTFREQ);
return Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;

View File

@ -13,6 +13,7 @@ namespace Core::Timing {
s64 msToCycles(std::chrono::milliseconds ms);
s64 usToCycles(std::chrono::microseconds us);
s64 nsToCycles(std::chrono::nanoseconds ns);
u64 nsToClockCycles(std::chrono::nanoseconds ns);
inline std::chrono::milliseconds CyclesToMs(s64 cycles) {
return std::chrono::milliseconds(cycles * 1000 / Hardware::BASE_CLOCK_RATE);

161
src/core/host_timing.cpp Normal file
View File

@ -0,0 +1,161 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "core/host_timing.h"
#include <algorithm>
#include <mutex>
#include <string>
#include <tuple>
#include "common/assert.h"
#include "common/thread.h"
#include "core/core_timing_util.h"
namespace Core::HostTiming {
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
return std::make_shared<EventType>(std::move(callback), std::move(name));
}
struct CoreTiming::Event {
u64 time;
u64 fifo_order;
u64 userdata;
std::weak_ptr<EventType> type;
// Sort by time, unless the times are the same, in which case sort by
// the order added to the queue
friend bool operator>(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
}
friend bool operator<(const Event& left, const Event& right) {
return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
}
};
CoreTiming::CoreTiming() = default;
CoreTiming::~CoreTiming() = default;
void CoreTiming::ThreadEntry(CoreTiming& instance) {
instance.Advance();
}
void CoreTiming::Initialize() {
event_fifo_id = 0;
const auto empty_timed_callback = [](u64, s64) {};
ev_lost = CreateEvent("_lost_event", empty_timed_callback);
start_time = std::chrono::system_clock::now();
timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
}
void CoreTiming::Shutdown() {
std::unique_lock<std::mutex> guard(inner_mutex);
shutting_down = true;
if (!is_set) {
is_set = true;
condvar.notify_one();
}
inner_mutex.unlock();
timer_thread->join();
ClearPendingEvents();
}
void CoreTiming::ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type,
u64 userdata) {
std::lock_guard guard{inner_mutex};
const u64 timeout = static_cast<u64>(GetGlobalTimeNs().count() + ns_into_future);
event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type});
std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
if (!is_set) {
is_set = true;
condvar.notify_one();
}
}
void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata) {
std::lock_guard guard{inner_mutex};
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get() && e.userdata == userdata;
});
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != event_queue.end()) {
event_queue.erase(itr, event_queue.end());
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
}
u64 CoreTiming::GetCPUTicks() const {
std::chrono::nanoseconds time_now = GetGlobalTimeNs();
return Core::Timing::nsToCycles(time_now);
}
u64 CoreTiming::GetClockTicks() const {
std::chrono::nanoseconds time_now = GetGlobalTimeNs();
return Core::Timing::nsToClockCycles(time_now);
}
void CoreTiming::ClearPendingEvents() {
event_queue.clear();
}
void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
std::lock_guard guard{inner_mutex};
const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
return e.type.lock().get() == event_type.get();
});
// Removing random items breaks the invariant so we have to re-establish it.
if (itr != event_queue.end()) {
event_queue.erase(itr, event_queue.end());
std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
}
}
void CoreTiming::Advance() {
while (true) {
std::unique_lock<std::mutex> guard(inner_mutex);
global_timer = GetGlobalTimeNs().count();
while (!event_queue.empty() && event_queue.front().time <= global_timer) {
Event evt = std::move(event_queue.front());
std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
event_queue.pop_back();
inner_mutex.unlock();
if (auto event_type{evt.type.lock()}) {
event_type->callback(evt.userdata, global_timer - evt.time);
}
inner_mutex.lock();
}
auto next_time = std::chrono::nanoseconds(event_queue.front().time - global_timer);
condvar.wait_for(guard, next_time, [this] { return is_set; });
is_set = false;
if (shutting_down) {
break;
}
}
}
std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
sys_time_point current = std::chrono::system_clock::now();
auto elapsed = current - start_time;
return std::chrono::duration_cast<std::chrono::nanoseconds>(elapsed);
}
std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
sys_time_point current = std::chrono::system_clock::now();
auto elapsed = current - start_time;
return std::chrono::duration_cast<std::chrono::microseconds>(elapsed);
}
} // namespace Core::Timing

126
src/core/host_timing.h Normal file
View File

@ -0,0 +1,126 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <chrono>
#include <functional>
#include <memory>
#include <mutex>
#include <optional>
#include <string>
#include <thread>
#include <vector>
#include "common/common_types.h"
#include "common/threadsafe_queue.h"
namespace Core::HostTiming {
/// A callback that may be scheduled for a particular core timing event.
using TimedCallback = std::function<void(u64 userdata, s64 cycles_late)>;
using sys_time_point = std::chrono::time_point<std::chrono::system_clock>;
/// Contains the characteristics of a particular event.
struct EventType {
EventType(TimedCallback&& callback, std::string&& name)
: callback{std::move(callback)}, name{std::move(name)} {}
/// The event's callback function.
TimedCallback callback;
/// A pointer to the name of the event.
const std::string name;
};
/**
* This is a system to schedule events into the emulated machine's future. Time is measured
* in main CPU clock cycles.
*
* To schedule an event, you first have to register its type. This is where you pass in the
* callback. You then schedule events using the type id you get back.
*
* The int cyclesLate that the callbacks get is how many cycles late it was.
* So to schedule a new event on a regular basis:
* inside callback:
* ScheduleEvent(periodInCycles - cyclesLate, callback, "whatever")
*/
class CoreTiming {
public:
CoreTiming();
~CoreTiming();
CoreTiming(const CoreTiming&) = delete;
CoreTiming(CoreTiming&&) = delete;
CoreTiming& operator=(const CoreTiming&) = delete;
CoreTiming& operator=(CoreTiming&&) = delete;
/// CoreTiming begins at the boundary of timing slice -1. An initial call to Advance() is
/// required to end slice - 1 and start slice 0 before the first cycle of code is executed.
void Initialize();
/// Tears down all timing related functionality.
void Shutdown();
/// Schedules an event in core timing
void ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type,
u64 userdata = 0);
void UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata);
/// We only permit one event of each type in the queue at a time.
void RemoveEvent(const std::shared_ptr<EventType>& event_type);
/// Returns current time in emulated CPU cycles
u64 GetCPUTicks() const;
/// Returns current time in emulated in Clock cycles
u64 GetClockTicks() const;
/// Returns current time in microseconds.
std::chrono::microseconds GetGlobalTimeUs() const;
/// Returns current time in nanoseconds.
std::chrono::nanoseconds GetGlobalTimeNs() const;
private:
struct Event;
/// Clear all pending events. This should ONLY be done on exit.
void ClearPendingEvents();
static void ThreadEntry(CoreTiming& instance);
void Advance();
sys_time_point start_time;
u64 global_timer = 0;
std::chrono::nanoseconds start_point;
// The queue is a min-heap using std::make_heap/push_heap/pop_heap.
// We don't use std::priority_queue because we need to be able to serialize, unserialize and
// erase arbitrary events (RemoveEvent()) regardless of the queue order. These aren't
// accomodated by the standard adaptor class.
std::vector<Event> event_queue;
u64 event_fifo_id = 0;
std::shared_ptr<EventType> ev_lost;
bool is_set = false;
std::condition_variable condvar;
std::mutex inner_mutex;
std::unique_ptr<std::thread> timer_thread;
std::atomic<bool> shutting_down{};
};
/// Creates a core timing event with the given name and callback.
///
/// @param name The name of the core timing event to create.
/// @param callback The callback to execute for the event.
///
/// @returns An EventType instance representing the created event.
///
std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback);
} // namespace Core::Timing