yuzu-emu
/
yuzu-mainline
Archived
1
0
Fork 0

Thread: Reduce use of Handles and move some funcs to inside the class.

This commit is contained in:
Yuri Kunde Schlesner 2014-12-22 11:07:22 -02:00
parent ba72208cd4
commit 9bf8462b96
11 changed files with 222 additions and 302 deletions

View File

@ -25,7 +25,7 @@ ARM_Interface* g_sys_core = nullptr; ///< ARM11 system (OS) core
void RunLoop(int tight_loop) { void RunLoop(int tight_loop) {
// If the current thread is an idle thread, then don't execute instructions, // If the current thread is an idle thread, then don't execute instructions,
// instead advance to the next event and try to yield to the next thread // instead advance to the next event and try to yield to the next thread
if (Kernel::IsIdleThread(Kernel::GetCurrentThreadHandle())) { if (Kernel::GetCurrentThread()->IsIdle()) {
LOG_TRACE(Core_ARM11, "Idling"); LOG_TRACE(Core_ARM11, "Idling");
CoreTiming::Idle(); CoreTiming::Idle();
CoreTiming::Advance(); CoreTiming::Advance();

View File

@ -30,24 +30,28 @@ public:
/// Arbitrate an address /// Arbitrate an address
ResultCode ArbitrateAddress(Handle handle, ArbitrationType type, u32 address, s32 value) { ResultCode ArbitrateAddress(Handle handle, ArbitrationType type, u32 address, s32 value) {
Object* object = Kernel::g_handle_table.GetGeneric(handle);
if (object == nullptr)
return InvalidHandle(ErrorModule::Kernel);
switch (type) { switch (type) {
// Signal thread(s) waiting for arbitrate address... // Signal thread(s) waiting for arbitrate address...
case ArbitrationType::Signal: case ArbitrationType::Signal:
// Negative value means resume all threads // Negative value means resume all threads
if (value < 0) { if (value < 0) {
ArbitrateAllThreads(handle, address); ArbitrateAllThreads(object, address);
} else { } else {
// Resume first N threads // Resume first N threads
for(int i = 0; i < value; i++) for(int i = 0; i < value; i++)
ArbitrateHighestPriorityThread(handle, address); ArbitrateHighestPriorityThread(object, address);
} }
break; break;
// Wait current thread (acquire the arbiter)... // Wait current thread (acquire the arbiter)...
case ArbitrationType::WaitIfLessThan: case ArbitrationType::WaitIfLessThan:
if ((s32)Memory::Read32(address) <= value) { if ((s32)Memory::Read32(address) <= value) {
Kernel::WaitCurrentThread(WAITTYPE_ARB, handle, address); Kernel::WaitCurrentThread(WAITTYPE_ARB, object, address);
HLE::Reschedule(__func__); HLE::Reschedule(__func__);
} }
break; break;
@ -57,7 +61,7 @@ ResultCode ArbitrateAddress(Handle handle, ArbitrationType type, u32 address, s3
s32 memory_value = Memory::Read32(address) - 1; s32 memory_value = Memory::Read32(address) - 1;
Memory::Write32(address, memory_value); Memory::Write32(address, memory_value);
if (memory_value <= value) { if (memory_value <= value) {
Kernel::WaitCurrentThread(WAITTYPE_ARB, handle, address); Kernel::WaitCurrentThread(WAITTYPE_ARB, object, address);
HLE::Reschedule(__func__); HLE::Reschedule(__func__);
} }
break; break;

View File

@ -33,11 +33,11 @@ public:
ResultVal<bool> WaitSynchronization() override { ResultVal<bool> WaitSynchronization() override {
bool wait = locked; bool wait = locked;
if (locked) { if (locked) {
Handle thread = GetCurrentThreadHandle(); Handle thread = GetCurrentThread()->GetHandle();
if (std::find(waiting_threads.begin(), waiting_threads.end(), thread) == waiting_threads.end()) { if (std::find(waiting_threads.begin(), waiting_threads.end(), thread) == waiting_threads.end()) {
waiting_threads.push_back(thread); waiting_threads.push_back(thread);
} }
Kernel::WaitCurrentThread(WAITTYPE_EVENT, GetHandle()); Kernel::WaitCurrentThread(WAITTYPE_EVENT, this);
} }
if (reset_type != RESETTYPE_STICKY && !permanent_locked) { if (reset_type != RESETTYPE_STICKY && !permanent_locked) {
locked = true; locked = true;
@ -88,7 +88,9 @@ ResultCode SignalEvent(const Handle handle) {
// Resume threads waiting for event to signal // Resume threads waiting for event to signal
bool event_caught = false; bool event_caught = false;
for (size_t i = 0; i < evt->waiting_threads.size(); ++i) { for (size_t i = 0; i < evt->waiting_threads.size(); ++i) {
ResumeThreadFromWait( evt->waiting_threads[i]); Thread* thread = Kernel::g_handle_table.Get<Thread>(evt->waiting_threads[i]);
if (thread != nullptr)
thread->ResumeFromWait();
// If any thread is signalled awake by this event, assume the event was "caught" and reset // If any thread is signalled awake by this event, assume the event was "caught" and reset
// the event. This will result in the next thread waiting on the event to block. Otherwise, // the event. This will result in the next thread waiting on the event to block. Otherwise,

View File

@ -14,7 +14,7 @@
namespace Kernel { namespace Kernel {
Handle g_main_thread = 0; Thread* g_main_thread = nullptr;
HandleTable g_handle_table; HandleTable g_handle_table;
u64 g_program_id = 0; u64 g_program_id = 0;

View File

@ -16,6 +16,8 @@ const Handle INVALID_HANDLE = 0;
namespace Kernel { namespace Kernel {
class Thread;
// TODO: Verify code // TODO: Verify code
const ResultCode ERR_OUT_OF_HANDLES(ErrorDescription::OutOfMemory, ErrorModule::Kernel, const ResultCode ERR_OUT_OF_HANDLES(ErrorDescription::OutOfMemory, ErrorModule::Kernel,
ErrorSummary::OutOfResource, ErrorLevel::Temporary); ErrorSummary::OutOfResource, ErrorLevel::Temporary);
@ -190,7 +192,7 @@ private:
}; };
extern HandleTable g_handle_table; extern HandleTable g_handle_table;
extern Handle g_main_thread; extern Thread* g_main_thread;
/// The ID code of the currently running game /// The ID code of the currently running game
/// TODO(Subv): This variable should not be here, /// TODO(Subv): This variable should not be here,

View File

@ -40,14 +40,21 @@ static MutexMap g_mutex_held_locks;
* @param mutex Mutex that is to be acquired * @param mutex Mutex that is to be acquired
* @param thread Thread that will acquired * @param thread Thread that will acquired
*/ */
void MutexAcquireLock(Mutex* mutex, Handle thread = GetCurrentThreadHandle()) { void MutexAcquireLock(Mutex* mutex, Handle thread = GetCurrentThread()->GetHandle()) {
g_mutex_held_locks.insert(std::make_pair(thread, mutex->GetHandle())); g_mutex_held_locks.insert(std::make_pair(thread, mutex->GetHandle()));
mutex->lock_thread = thread; mutex->lock_thread = thread;
} }
bool ReleaseMutexForThread(Mutex* mutex, Handle thread) { bool ReleaseMutexForThread(Mutex* mutex, Handle thread_handle) {
MutexAcquireLock(mutex, thread); MutexAcquireLock(mutex, thread_handle);
Kernel::ResumeThreadFromWait(thread);
Thread* thread = Kernel::g_handle_table.Get<Thread>(thread_handle);
if (thread == nullptr) {
LOG_ERROR(Kernel, "Called with invalid handle: %08X", thread_handle);
return false;
}
thread->ResumeFromWait();
return true; return true;
} }
@ -168,8 +175,8 @@ Handle CreateMutex(bool initial_locked, const std::string& name) {
ResultVal<bool> Mutex::WaitSynchronization() { ResultVal<bool> Mutex::WaitSynchronization() {
bool wait = locked; bool wait = locked;
if (locked) { if (locked) {
waiting_threads.push_back(GetCurrentThreadHandle()); waiting_threads.push_back(GetCurrentThread()->GetHandle());
Kernel::WaitCurrentThread(WAITTYPE_MUTEX, GetHandle()); Kernel::WaitCurrentThread(WAITTYPE_MUTEX, this);
} else { } else {
// Lock the mutex when the first thread accesses it // Lock the mutex when the first thread accesses it
locked = true; locked = true;

View File

@ -37,8 +37,8 @@ public:
bool wait = !IsAvailable(); bool wait = !IsAvailable();
if (wait) { if (wait) {
Kernel::WaitCurrentThread(WAITTYPE_SEMA, GetHandle()); Kernel::WaitCurrentThread(WAITTYPE_SEMA, this);
waiting_threads.push(GetCurrentThreadHandle()); waiting_threads.push(GetCurrentThread()->GetHandle());
} else { } else {
--available_count; --available_count;
} }
@ -84,7 +84,9 @@ ResultCode ReleaseSemaphore(s32* count, Handle handle, s32 release_count) {
// Notify some of the threads that the semaphore has been released // Notify some of the threads that the semaphore has been released
// stop once the semaphore is full again or there are no more waiting threads // stop once the semaphore is full again or there are no more waiting threads
while (!semaphore->waiting_threads.empty() && semaphore->IsAvailable()) { while (!semaphore->waiting_threads.empty() && semaphore->IsAvailable()) {
Kernel::ResumeThreadFromWait(semaphore->waiting_threads.front()); Thread* thread = Kernel::g_handle_table.Get<Thread>(semaphore->waiting_threads.front());
if (thread != nullptr)
thread->ResumeFromWait();
semaphore->waiting_threads.pop(); semaphore->waiting_threads.pop();
--semaphore->available_count; --semaphore->available_count;
} }

View File

@ -25,23 +25,22 @@ namespace Kernel {
ResultVal<bool> Thread::WaitSynchronization() { ResultVal<bool> Thread::WaitSynchronization() {
const bool wait = status != THREADSTATUS_DORMANT; const bool wait = status != THREADSTATUS_DORMANT;
if (wait) { if (wait) {
Handle thread = GetCurrentThreadHandle(); Thread* thread = GetCurrentThread();
if (std::find(waiting_threads.begin(), waiting_threads.end(), thread) == waiting_threads.end()) { if (std::find(waiting_threads.begin(), waiting_threads.end(), thread) == waiting_threads.end()) {
waiting_threads.push_back(thread); waiting_threads.push_back(thread);
} }
WaitCurrentThread(WAITTYPE_THREADEND, this->GetHandle()); WaitCurrentThread(WAITTYPE_THREADEND, this);
} }
return MakeResult<bool>(wait); return MakeResult<bool>(wait);
} }
// Lists all thread ids that aren't deleted/etc. // Lists all thread ids that aren't deleted/etc.
static std::vector<Handle> thread_queue; static std::vector<Thread*> thread_queue; // TODO(yuriks): Owned
// Lists only ready thread ids. // Lists only ready thread ids.
static Common::ThreadQueueList<Handle, THREADPRIO_LOWEST+1> thread_ready_queue; static Common::ThreadQueueList<Thread*, THREADPRIO_LOWEST+1> thread_ready_queue;
static Handle current_thread_handle;
static Thread* current_thread; static Thread* current_thread;
static const u32 INITIAL_THREAD_ID = 1; ///< The first available thread id at startup static const u32 INITIAL_THREAD_ID = 1; ///< The first available thread id at startup
@ -51,29 +50,8 @@ Thread* GetCurrentThread() {
return current_thread; return current_thread;
} }
/// Gets the current thread handle
Handle GetCurrentThreadHandle() {
return GetCurrentThread()->GetHandle();
}
/// Sets the current thread
inline void SetCurrentThread(Thread* t) {
current_thread = t;
current_thread_handle = t->GetHandle();
}
/// Saves the current CPU context
void SaveContext(Core::ThreadContext& ctx) {
Core::g_app_core->SaveContext(ctx);
}
/// Loads a CPU context
void LoadContext(Core::ThreadContext& ctx) {
Core::g_app_core->LoadContext(ctx);
}
/// Resets a thread /// Resets a thread
void ResetThread(Thread* t, u32 arg, s32 lowest_priority) { static void ResetThread(Thread* t, u32 arg, s32 lowest_priority) {
memset(&t->context, 0, sizeof(Core::ThreadContext)); memset(&t->context, 0, sizeof(Core::ThreadContext));
t->context.cpu_registers[0] = arg; t->context.cpu_registers[0] = arg;
@ -90,22 +68,21 @@ void ResetThread(Thread* t, u32 arg, s32 lowest_priority) {
t->current_priority = t->initial_priority; t->current_priority = t->initial_priority;
} }
t->wait_type = WAITTYPE_NONE; t->wait_type = WAITTYPE_NONE;
t->wait_handle = 0; t->wait_object = nullptr;
t->wait_address = 0; t->wait_address = 0;
} }
/// Change a thread to "ready" state /// Change a thread to "ready" state
void ChangeReadyState(Thread* t, bool ready) { static void ChangeReadyState(Thread* t, bool ready) {
Handle handle = t->GetHandle();
if (t->IsReady()) { if (t->IsReady()) {
if (!ready) { if (!ready) {
thread_ready_queue.remove(t->current_priority, handle); thread_ready_queue.remove(t->current_priority, t);
} }
} else if (ready) { } else if (ready) {
if (t->IsRunning()) { if (t->IsRunning()) {
thread_ready_queue.push_front(t->current_priority, handle); thread_ready_queue.push_front(t->current_priority, t);
} else { } else {
thread_ready_queue.push_back(t->current_priority, handle); thread_ready_queue.push_back(t->current_priority, t);
} }
t->status = THREADSTATUS_READY; t->status = THREADSTATUS_READY;
} }
@ -117,43 +94,36 @@ static bool CheckWaitType(const Thread* thread, WaitType type) {
} }
/// Check if a thread is blocking on a specified wait type with a specified handle /// Check if a thread is blocking on a specified wait type with a specified handle
static bool CheckWaitType(const Thread* thread, WaitType type, Handle wait_handle) { static bool CheckWaitType(const Thread* thread, WaitType type, Object* wait_object) {
return CheckWaitType(thread, type) && (wait_handle == thread->wait_handle); return CheckWaitType(thread, type) && wait_object == thread->wait_object;
} }
/// Check if a thread is blocking on a specified wait type with a specified handle and address /// Check if a thread is blocking on a specified wait type with a specified handle and address
static bool CheckWaitType(const Thread* thread, WaitType type, Handle wait_handle, VAddr wait_address) { static bool CheckWaitType(const Thread* thread, WaitType type, Object* wait_object, VAddr wait_address) {
return CheckWaitType(thread, type, wait_handle) && (wait_address == thread->wait_address); return CheckWaitType(thread, type, wait_object) && (wait_address == thread->wait_address);
} }
/// Stops the current thread /// Stops the current thread
ResultCode StopThread(Handle handle, const char* reason) { void Thread::Stop(const char* reason) {
Thread* thread = g_handle_table.Get<Thread>(handle);
if (thread == nullptr) return InvalidHandle(ErrorModule::Kernel);
// Release all the mutexes that this thread holds // Release all the mutexes that this thread holds
ReleaseThreadMutexes(handle); ReleaseThreadMutexes(GetHandle());
ChangeReadyState(thread, false); ChangeReadyState(this, false);
thread->status = THREADSTATUS_DORMANT; status = THREADSTATUS_DORMANT;
for (Handle waiting_handle : thread->waiting_threads) { for (Thread* waiting_thread : waiting_threads) {
Thread* waiting_thread = g_handle_table.Get<Thread>(waiting_handle); if (CheckWaitType(waiting_thread, WAITTYPE_THREADEND, this))
waiting_thread->ResumeFromWait();
if (CheckWaitType(waiting_thread, WAITTYPE_THREADEND, handle))
ResumeThreadFromWait(waiting_handle);
} }
thread->waiting_threads.clear(); waiting_threads.clear();
// Stopped threads are never waiting. // Stopped threads are never waiting.
thread->wait_type = WAITTYPE_NONE; wait_type = WAITTYPE_NONE;
thread->wait_handle = 0; wait_object = nullptr;
thread->wait_address = 0; wait_address = 0;
return RESULT_SUCCESS;
} }
/// Changes a threads state /// Changes a threads state
void ChangeThreadState(Thread* t, ThreadStatus new_status) { static void ChangeThreadState(Thread* t, ThreadStatus new_status) {
if (!t || t->status == new_status) { if (!t || t->status == new_status) {
return; return;
} }
@ -168,14 +138,12 @@ void ChangeThreadState(Thread* t, ThreadStatus new_status) {
} }
/// Arbitrate the highest priority thread that is waiting /// Arbitrate the highest priority thread that is waiting
Handle ArbitrateHighestPriorityThread(u32 arbiter, u32 address) { Thread* ArbitrateHighestPriorityThread(Object* arbiter, u32 address) {
Handle highest_priority_thread = 0; Thread* highest_priority_thread = nullptr;
s32 priority = THREADPRIO_LOWEST; s32 priority = THREADPRIO_LOWEST;
// Iterate through threads, find highest priority thread that is waiting to be arbitrated... // Iterate through threads, find highest priority thread that is waiting to be arbitrated...
for (Handle handle : thread_queue) { for (Thread* thread : thread_queue) {
Thread* thread = g_handle_table.Get<Thread>(handle);
if (!CheckWaitType(thread, WAITTYPE_ARB, arbiter, address)) if (!CheckWaitType(thread, WAITTYPE_ARB, arbiter, address))
continue; continue;
@ -183,31 +151,31 @@ Handle ArbitrateHighestPriorityThread(u32 arbiter, u32 address) {
continue; // TODO(yuriks): Thread handle will hang around forever. Should clean up. continue; // TODO(yuriks): Thread handle will hang around forever. Should clean up.
if(thread->current_priority <= priority) { if(thread->current_priority <= priority) {
highest_priority_thread = handle; highest_priority_thread = thread;
priority = thread->current_priority; priority = thread->current_priority;
} }
} }
// If a thread was arbitrated, resume it // If a thread was arbitrated, resume it
if (0 != highest_priority_thread) if (nullptr != highest_priority_thread) {
ResumeThreadFromWait(highest_priority_thread); highest_priority_thread->ResumeFromWait();
}
return highest_priority_thread; return highest_priority_thread;
} }
/// Arbitrate all threads currently waiting /// Arbitrate all threads currently waiting
void ArbitrateAllThreads(u32 arbiter, u32 address) { void ArbitrateAllThreads(Object* arbiter, u32 address) {
// Iterate through threads, find highest priority thread that is waiting to be arbitrated... // Iterate through threads, find highest priority thread that is waiting to be arbitrated...
for (Handle handle : thread_queue) { for (Thread* thread : thread_queue) {
Thread* thread = g_handle_table.Get<Thread>(handle);
if (CheckWaitType(thread, WAITTYPE_ARB, arbiter, address)) if (CheckWaitType(thread, WAITTYPE_ARB, arbiter, address))
ResumeThreadFromWait(handle); thread->ResumeFromWait();
} }
} }
/// Calls a thread by marking it as "ready" (note: will not actually execute until current thread yields) /// Calls a thread by marking it as "ready" (note: will not actually execute until current thread yields)
void CallThread(Thread* t) { static void CallThread(Thread* t) {
// Stop waiting // Stop waiting
if (t->wait_type != WAITTYPE_NONE) { if (t->wait_type != WAITTYPE_NONE) {
t->wait_type = WAITTYPE_NONE; t->wait_type = WAITTYPE_NONE;
@ -216,12 +184,12 @@ void CallThread(Thread* t) {
} }
/// Switches CPU context to that of the specified thread /// Switches CPU context to that of the specified thread
void SwitchContext(Thread* t) { static void SwitchContext(Thread* t) {
Thread* cur = GetCurrentThread(); Thread* cur = GetCurrentThread();
// Save context for current thread // Save context for current thread
if (cur) { if (cur) {
SaveContext(cur->context); Core::g_app_core->SaveContext(cur->context);
if (cur->IsRunning()) { if (cur->IsRunning()) {
ChangeReadyState(cur, true); ChangeReadyState(cur, true);
@ -229,19 +197,19 @@ void SwitchContext(Thread* t) {
} }
// Load context of new thread // Load context of new thread
if (t) { if (t) {
SetCurrentThread(t); current_thread = t;
ChangeReadyState(t, false); ChangeReadyState(t, false);
t->status = (t->status | THREADSTATUS_RUNNING) & ~THREADSTATUS_READY; t->status = (t->status | THREADSTATUS_RUNNING) & ~THREADSTATUS_READY;
t->wait_type = WAITTYPE_NONE; t->wait_type = WAITTYPE_NONE;
LoadContext(t->context); Core::g_app_core->LoadContext(t->context);
} else { } else {
SetCurrentThread(nullptr); current_thread = nullptr;
} }
} }
/// Gets the next thread that is ready to be run by priority /// Gets the next thread that is ready to be run by priority
Thread* NextThread() { static Thread* NextThread() {
Handle next; Thread* next;
Thread* cur = GetCurrentThread(); Thread* cur = GetCurrentThread();
if (cur && cur->IsRunning()) { if (cur && cur->IsRunning()) {
@ -252,18 +220,18 @@ Thread* NextThread() {
if (next == 0) { if (next == 0) {
return nullptr; return nullptr;
} }
return Kernel::g_handle_table.Get<Thread>(next); return next;
} }
void WaitCurrentThread(WaitType wait_type, Handle wait_handle) { void WaitCurrentThread(WaitType wait_type, Object* wait_object) {
Thread* thread = GetCurrentThread(); Thread* thread = GetCurrentThread();
thread->wait_type = wait_type; thread->wait_type = wait_type;
thread->wait_handle = wait_handle; thread->wait_object = wait_object;
ChangeThreadState(thread, ThreadStatus(THREADSTATUS_WAIT | (thread->status & THREADSTATUS_SUSPEND))); ChangeThreadState(thread, ThreadStatus(THREADSTATUS_WAIT | (thread->status & THREADSTATUS_SUSPEND)));
} }
void WaitCurrentThread(WaitType wait_type, Handle wait_handle, VAddr wait_address) { void WaitCurrentThread(WaitType wait_type, Object* wait_object, VAddr wait_address) {
WaitCurrentThread(wait_type, wait_handle); WaitCurrentThread(wait_type, wait_object);
GetCurrentThread()->wait_address = wait_address; GetCurrentThread()->wait_address = wait_address;
} }
@ -279,67 +247,84 @@ static void ThreadWakeupCallback(u64 parameter, int cycles_late) {
return; return;
} }
Kernel::ResumeThreadFromWait(handle); thread->ResumeFromWait();
} }
void WakeThreadAfterDelay(Handle handle, s64 nanoseconds) { void WakeThreadAfterDelay(Thread* thread, s64 nanoseconds) {
// Don't schedule a wakeup if the thread wants to wait forever // Don't schedule a wakeup if the thread wants to wait forever
if (nanoseconds == -1) if (nanoseconds == -1)
return; return;
_dbg_assert_(Kernel, thread != nullptr);
Thread* thread = Kernel::g_handle_table.Get<Thread>(handle);
if (thread == nullptr) {
LOG_ERROR(Kernel, "Thread doesn't exist %u", handle);
return;
}
u64 microseconds = nanoseconds / 1000; u64 microseconds = nanoseconds / 1000;
CoreTiming::ScheduleEvent(usToCycles(microseconds), ThreadWakeupEventType, handle); CoreTiming::ScheduleEvent(usToCycles(microseconds), ThreadWakeupEventType, thread->GetHandle());
} }
/// Resumes a thread from waiting by marking it as "ready" /// Resumes a thread from waiting by marking it as "ready"
void ResumeThreadFromWait(Handle handle) { void Thread::ResumeFromWait() {
Thread* thread = Kernel::g_handle_table.Get<Thread>(handle); status &= ~THREADSTATUS_WAIT;
if (thread) { wait_object = nullptr;
thread->status &= ~THREADSTATUS_WAIT; wait_type = WAITTYPE_NONE;
thread->wait_handle = 0; if (!(status & (THREADSTATUS_WAITSUSPEND | THREADSTATUS_DORMANT | THREADSTATUS_DEAD))) {
thread->wait_type = WAITTYPE_NONE; ChangeReadyState(this, true);
if (!(thread->status & (THREADSTATUS_WAITSUSPEND | THREADSTATUS_DORMANT | THREADSTATUS_DEAD))) {
ChangeReadyState(thread, true);
}
} }
} }
/// Prints the thread queue for debugging purposes /// Prints the thread queue for debugging purposes
void DebugThreadQueue() { static void DebugThreadQueue() {
Thread* thread = GetCurrentThread(); Thread* thread = GetCurrentThread();
if (!thread) { if (!thread) {
return; return;
} }
LOG_DEBUG(Kernel, "0x%02X 0x%08X (current)", thread->current_priority, GetCurrentThreadHandle()); LOG_DEBUG(Kernel, "0x%02X 0x%08X (current)", thread->current_priority, GetCurrentThread()->GetHandle());
for (u32 i = 0; i < thread_queue.size(); i++) { for (Thread* t : thread_queue) {
Handle handle = thread_queue[i]; s32 priority = thread_ready_queue.contains(t);
s32 priority = thread_ready_queue.contains(handle);
if (priority != -1) { if (priority != -1) {
LOG_DEBUG(Kernel, "0x%02X 0x%08X", priority, handle); LOG_DEBUG(Kernel, "0x%02X 0x%08X", priority, t->GetHandle());
} }
} }
} }
/// Creates a new thread ResultVal<Thread*> Thread::Create(const char* name, u32 entry_point, s32 priority, u32 arg,
Thread* CreateThread(Handle& handle, const char* name, u32 entry_point, s32 priority,
s32 processor_id, u32 stack_top, int stack_size) { s32 processor_id, u32 stack_top, int stack_size) {
_dbg_assert_(Kernel, name != nullptr);
_assert_msg_(KERNEL, (priority >= THREADPRIO_HIGHEST && priority <= THREADPRIO_LOWEST), if ((u32)stack_size < 0x200) {
"priority=%d, outside of allowable range!", priority) LOG_ERROR(Kernel, "(name=%s): invalid stack_size=0x%08X", name, stack_size);
// TODO: Verify error
return ResultCode(ErrorDescription::InvalidSize, ErrorModule::Kernel,
ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
}
if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) {
s32 new_priority = CLAMP(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST);
LOG_WARNING(Kernel_SVC, "(name=%s): invalid priority=%d, clamping to %d",
name, priority, new_priority);
// TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm
// validity of this
priority = new_priority;
}
if (!Memory::GetPointer(entry_point)) {
LOG_ERROR(Kernel_SVC, "(name=%s): invalid entry %08x", name, entry_point);
// TODO: Verify error
return ResultCode(ErrorDescription::InvalidAddress, ErrorModule::Kernel,
ErrorSummary::InvalidArgument, ErrorLevel::Permanent);
}
Thread* thread = new Thread; Thread* thread = new Thread;
// TOOD(yuriks): Fix error reporting // TODO(yuriks): Thread requires a handle to be inserted into the various scheduling queues for
handle = Kernel::g_handle_table.Create(thread).ValueOr(INVALID_HANDLE); // the time being. Create a handle here, it will be copied to the handle field in
// the object and use by the rest of the code. This should be removed when other
// code doesn't rely on the handle anymore.
ResultVal<Handle> handle = Kernel::g_handle_table.Create(thread);
// TODO(yuriks): Plug memory leak
if (handle.Failed())
return handle.Code();
thread_queue.push_back(handle); thread_queue.push_back(thread);
thread_ready_queue.prepare(priority); thread_ready_queue.prepare(priority);
thread->thread_id = next_thread_id++; thread->thread_id = next_thread_id++;
@ -350,69 +335,18 @@ Thread* CreateThread(Handle& handle, const char* name, u32 entry_point, s32 prio
thread->initial_priority = thread->current_priority = priority; thread->initial_priority = thread->current_priority = priority;
thread->processor_id = processor_id; thread->processor_id = processor_id;
thread->wait_type = WAITTYPE_NONE; thread->wait_type = WAITTYPE_NONE;
thread->wait_handle = 0; thread->wait_object = nullptr;
thread->wait_address = 0; thread->wait_address = 0;
thread->name = name; thread->name = name;
return thread;
}
/// Creates a new thread - wrapper for external user
Handle CreateThread(const char* name, u32 entry_point, s32 priority, u32 arg, s32 processor_id,
u32 stack_top, int stack_size) {
if (name == nullptr) {
LOG_ERROR(Kernel_SVC, "nullptr name");
return -1;
}
if ((u32)stack_size < 0x200) {
LOG_ERROR(Kernel_SVC, "(name=%s): invalid stack_size=0x%08X", name,
stack_size);
return -1;
}
if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) {
s32 new_priority = CLAMP(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST);
LOG_WARNING(Kernel_SVC, "(name=%s): invalid priority=%d, clamping to %d",
name, priority, new_priority);
// TODO(bunnei): Clamping to a valid priority is not necessarily correct behavior... Confirm
// validity of this
priority = new_priority;
}
if (!Memory::GetPointer(entry_point)) {
LOG_ERROR(Kernel_SVC, "(name=%s): invalid entry %08x", name, entry_point);
return -1;
}
Handle handle;
Thread* thread = CreateThread(handle, name, entry_point, priority, processor_id, stack_top,
stack_size);
ResetThread(thread, arg, 0); ResetThread(thread, arg, 0);
CallThread(thread); CallThread(thread);
return handle; return MakeResult<Thread*>(thread);
}
/// Get the priority of the thread specified by handle
ResultVal<u32> GetThreadPriority(const Handle handle) {
Thread* thread = g_handle_table.Get<Thread>(handle);
if (thread == nullptr) return InvalidHandle(ErrorModule::Kernel);
return MakeResult<u32>(thread->current_priority);
} }
/// Set the priority of the thread specified by handle /// Set the priority of the thread specified by handle
ResultCode SetThreadPriority(Handle handle, s32 priority) { void Thread::SetPriority(s32 priority) {
Thread* thread = nullptr;
if (!handle) {
thread = GetCurrentThread(); // TODO(bunnei): Is this correct behavior?
} else {
thread = g_handle_table.Get<Thread>(handle);
if (thread == nullptr) {
return InvalidHandle(ErrorModule::Kernel);
}
}
_assert_msg_(KERNEL, (thread != nullptr), "called, but thread is nullptr!");
// If priority is invalid, clamp to valid range // If priority is invalid, clamp to valid range
if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) { if (priority < THREADPRIO_HIGHEST || priority > THREADPRIO_LOWEST) {
s32 new_priority = CLAMP(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST); s32 new_priority = CLAMP(priority, THREADPRIO_HIGHEST, THREADPRIO_LOWEST);
@ -423,38 +357,39 @@ ResultCode SetThreadPriority(Handle handle, s32 priority) {
} }
// Change thread priority // Change thread priority
s32 old = thread->current_priority; s32 old = current_priority;
thread_ready_queue.remove(old, handle); thread_ready_queue.remove(old, this);
thread->current_priority = priority; current_priority = priority;
thread_ready_queue.prepare(thread->current_priority); thread_ready_queue.prepare(current_priority);
// Change thread status to "ready" and push to ready queue // Change thread status to "ready" and push to ready queue
if (thread->IsRunning()) { if (IsRunning()) {
thread->status = (thread->status & ~THREADSTATUS_RUNNING) | THREADSTATUS_READY; status = (status & ~THREADSTATUS_RUNNING) | THREADSTATUS_READY;
} }
if (thread->IsReady()) { if (IsReady()) {
thread_ready_queue.push_back(thread->current_priority, handle); thread_ready_queue.push_back(current_priority, this);
} }
return RESULT_SUCCESS;
} }
Handle SetupIdleThread() { Handle SetupIdleThread() {
Handle handle; // We need to pass a few valid values to get around parameter checking in Thread::Create.
Thread* thread = CreateThread(handle, "idle", 0, THREADPRIO_LOWEST, THREADPROCESSORID_0, 0, 0); auto thread_res = Thread::Create("idle", Memory::KERNEL_MEMORY_VADDR, THREADPRIO_LOWEST, 0,
THREADPROCESSORID_0, 0, Kernel::DEFAULT_STACK_SIZE);
_dbg_assert_(Kernel, thread_res.Succeeded());
Thread* thread = *thread_res;
thread->idle = true; thread->idle = true;
CallThread(thread); CallThread(thread);
return handle; return thread->GetHandle();
} }
Handle SetupMainThread(s32 priority, int stack_size) { Thread* SetupMainThread(s32 priority, int stack_size) {
Handle handle;
// Initialize new "main" thread // Initialize new "main" thread
Thread* thread = CreateThread(handle, "main", Core::g_app_core->GetPC(), priority, ResultVal<Thread*> thread_res = Thread::Create("main", Core::g_app_core->GetPC(), priority, 0,
THREADPROCESSORID_0, Memory::SCRATCHPAD_VADDR_END, stack_size); THREADPROCESSORID_0, Memory::SCRATCHPAD_VADDR_END, stack_size);
// TODO(yuriks): Propagate error
ResetThread(thread, 0, 0); _dbg_assert_(Kernel, thread_res.Succeeded());
Thread* thread = *thread_res;
// If running another thread already, set it to "ready" state // If running another thread already, set it to "ready" state
Thread* cur = GetCurrentThread(); Thread* cur = GetCurrentThread();
@ -463,11 +398,11 @@ Handle SetupMainThread(s32 priority, int stack_size) {
} }
// Run new "main" thread // Run new "main" thread
SetCurrentThread(thread); current_thread = thread;
thread->status = THREADSTATUS_RUNNING; thread->status = THREADSTATUS_RUNNING;
LoadContext(thread->context); Core::g_app_core->LoadContext(thread->context);
return handle; return thread;
} }
@ -483,34 +418,13 @@ void Reschedule() {
} else { } else {
LOG_TRACE(Kernel, "cannot context switch from 0x%08X, no higher priority thread!", prev->GetHandle()); LOG_TRACE(Kernel, "cannot context switch from 0x%08X, no higher priority thread!", prev->GetHandle());
for (Handle handle : thread_queue) { for (Thread* thread : thread_queue) {
Thread* thread = g_handle_table.Get<Thread>(handle);
LOG_TRACE(Kernel, "\thandle=0x%08X prio=0x%02X, status=0x%08X wait_type=0x%08X wait_handle=0x%08X", LOG_TRACE(Kernel, "\thandle=0x%08X prio=0x%02X, status=0x%08X wait_type=0x%08X wait_handle=0x%08X",
thread->GetHandle(), thread->current_priority, thread->status, thread->wait_type, thread->wait_handle); thread->GetHandle(), thread->current_priority, thread->status, thread->wait_type, thread->wait_object->GetHandle());
} }
} }
} }
bool IsIdleThread(Handle handle) {
Thread* thread = g_handle_table.Get<Thread>(handle);
if (!thread) {
LOG_ERROR(Kernel, "Thread not found %u", handle);
return false;
}
return thread->IsIdle();
}
ResultCode GetThreadId(u32* thread_id, Handle handle) {
Thread* thread = g_handle_table.Get<Thread>(handle);
if (thread == nullptr)
return ResultCode(ErrorDescription::InvalidHandle, ErrorModule::OS,
ErrorSummary::WrongArgument, ErrorLevel::Permanent);
*thread_id = thread->thread_id;
return RESULT_SUCCESS;
}
//////////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////////////
void ThreadingInit() { void ThreadingInit() {

View File

@ -54,6 +54,9 @@ namespace Kernel {
class Thread : public Kernel::Object { class Thread : public Kernel::Object {
public: public:
static ResultVal<Thread*> Create(const char* name, u32 entry_point, s32 priority, u32 arg,
s32 processor_id, u32 stack_top, int stack_size = Kernel::DEFAULT_STACK_SIZE);
std::string GetName() const override { return name; } std::string GetName() const override { return name; }
std::string GetTypeName() const override { return "Thread"; } std::string GetTypeName() const override { return "Thread"; }
@ -69,6 +72,15 @@ public:
ResultVal<bool> WaitSynchronization() override; ResultVal<bool> WaitSynchronization() override;
s32 GetPriority() const { return current_priority; }
void SetPriority(s32 priority);
u32 GetThreadId() const { return thread_id; }
void Stop(const char* reason);
/// Resumes a thread from waiting by marking it as "ready".
void ResumeFromWait();
Core::ThreadContext context; Core::ThreadContext context;
u32 thread_id; u32 thread_id;
@ -84,10 +96,10 @@ public:
s32 processor_id; s32 processor_id;
WaitType wait_type; WaitType wait_type;
Handle wait_handle; Object* wait_object;
VAddr wait_address; VAddr wait_address;
std::vector<Handle> waiting_threads; std::vector<Thread*> waiting_threads; // TODO(yuriks): Owned
std::string name; std::string name;
@ -95,79 +107,47 @@ public:
bool idle = false; bool idle = false;
private: private:
// TODO(yuriks) Temporary until the creation logic can be moved into a static function
friend Thread* CreateThread(Handle& handle, const char* name, u32 entry_point, s32 priority,
s32 processor_id, u32 stack_top, int stack_size);
Thread() = default; Thread() = default;
}; };
/// Creates a new thread - wrapper for external user
Handle CreateThread(const char* name, u32 entry_point, s32 priority, u32 arg, s32 processor_id,
u32 stack_top, int stack_size=Kernel::DEFAULT_STACK_SIZE);
/// Sets up the primary application thread /// Sets up the primary application thread
Handle SetupMainThread(s32 priority, int stack_size=Kernel::DEFAULT_STACK_SIZE); Thread* SetupMainThread(s32 priority, int stack_size = Kernel::DEFAULT_STACK_SIZE);
/// Reschedules to the next available thread (call after current thread is suspended) /// Reschedules to the next available thread (call after current thread is suspended)
void Reschedule(); void Reschedule();
/// Stops the current thread
ResultCode StopThread(Handle thread, const char* reason);
/**
* Retrieves the ID of the specified thread handle
* @param thread_id Will contain the output thread id
* @param handle Handle to the thread we want
* @return Whether the function was successful or not
*/
ResultCode GetThreadId(u32* thread_id, Handle handle);
/// Resumes a thread from waiting by marking it as "ready"
void ResumeThreadFromWait(Handle handle);
/// Arbitrate the highest priority thread that is waiting /// Arbitrate the highest priority thread that is waiting
Handle ArbitrateHighestPriorityThread(u32 arbiter, u32 address); Thread* ArbitrateHighestPriorityThread(Object* arbiter, u32 address);
/// Arbitrate all threads currently waiting... /// Arbitrate all threads currently waiting...
void ArbitrateAllThreads(u32 arbiter, u32 address); void ArbitrateAllThreads(Object* arbiter, u32 address);
/// Gets the current thread /// Gets the current thread
Thread* GetCurrentThread(); Thread* GetCurrentThread();
/// Gets the current thread handle
Handle GetCurrentThreadHandle();
/** /**
* Puts the current thread in the wait state for the given type * Puts the current thread in the wait state for the given type
* @param wait_type Type of wait * @param wait_type Type of wait
* @param wait_handle Handle of Kernel object that we are waiting on, defaults to current thread * @param wait_object Kernel object that we are waiting on, defaults to current thread
*/ */
void WaitCurrentThread(WaitType wait_type, Handle wait_handle=GetCurrentThreadHandle()); void WaitCurrentThread(WaitType wait_type, Object* wait_object = GetCurrentThread());
/** /**
* Schedules an event to wake up the specified thread after the specified delay. * Schedules an event to wake up the specified thread after the specified delay.
* @param handle The thread handle. * @param handle The thread handle.
* @param nanoseconds The time this thread will be allowed to sleep for. * @param nanoseconds The time this thread will be allowed to sleep for.
*/ */
void WakeThreadAfterDelay(Handle handle, s64 nanoseconds); void WakeThreadAfterDelay(Thread* thread, s64 nanoseconds);
/** /**
* Puts the current thread in the wait state for the given type * Puts the current thread in the wait state for the given type
* @param wait_type Type of wait * @param wait_type Type of wait
* @param wait_handle Handle of Kernel object that we are waiting on, defaults to current thread * @param wait_object Kernel object that we are waiting on
* @param wait_address Arbitration address used to resume from wait * @param wait_address Arbitration address used to resume from wait
*/ */
void WaitCurrentThread(WaitType wait_type, Handle wait_handle, VAddr wait_address); void WaitCurrentThread(WaitType wait_type, Object* wait_object, VAddr wait_address);
/// Put current thread in a wait state - on WaitSynchronization
void WaitThread_Synchronization();
/// Get the priority of the thread specified by handle
ResultVal<u32> GetThreadPriority(const Handle handle);
/// Set the priority of the thread specified by handle
ResultCode SetThreadPriority(Handle handle, s32 priority);
/** /**
* Sets up the idle thread, this is a thread that is intended to never execute instructions, * Sets up the idle thread, this is a thread that is intended to never execute instructions,
@ -176,10 +156,6 @@ ResultCode SetThreadPriority(Handle handle, s32 priority);
* @returns The handle of the idle thread * @returns The handle of the idle thread
*/ */
Handle SetupIdleThread(); Handle SetupIdleThread();
/// Whether the current thread is an idle thread
bool IsIdleThread(Handle thread);
/// Initialize threading /// Initialize threading
void ThreadingInit(); void ThreadingInit();

View File

@ -33,8 +33,8 @@ public:
ResultVal<bool> WaitSynchronization() override { ResultVal<bool> WaitSynchronization() override {
bool wait = !signaled; bool wait = !signaled;
if (wait) { if (wait) {
waiting_threads.insert(GetCurrentThreadHandle()); waiting_threads.insert(GetCurrentThread()->GetHandle());
Kernel::WaitCurrentThread(WAITTYPE_TIMER, GetHandle()); Kernel::WaitCurrentThread(WAITTYPE_TIMER, this);
} }
return MakeResult<bool>(wait); return MakeResult<bool>(wait);
} }
@ -92,8 +92,10 @@ static void TimerCallback(u64 timer_handle, int cycles_late) {
timer->signaled = true; timer->signaled = true;
// Resume all waiting threads // Resume all waiting threads
for (Handle thread : timer->waiting_threads) for (Handle thread_handle : timer->waiting_threads) {
ResumeThreadFromWait(thread); if (Thread* thread = Kernel::g_handle_table.Get<Thread>(thread_handle))
thread->ResumeFromWait();
}
timer->waiting_threads.clear(); timer->waiting_threads.clear();

View File

@ -231,41 +231,47 @@ static Result CreateThread(u32 priority, u32 entry_point, u32 arg, u32 stack_top
name = Common::StringFromFormat("unknown-%08x", entry_point); name = Common::StringFromFormat("unknown-%08x", entry_point);
} }
Handle thread = Kernel::CreateThread(name.c_str(), entry_point, priority, arg, processor_id, ResultVal<Kernel::Thread*> thread_res = Kernel::Thread::Create(name.c_str(), entry_point, priority, arg,
stack_top); processor_id, stack_top);
if (thread_res.Failed())
return thread_res.Code().raw;
Kernel::Thread* thread = *thread_res;
Core::g_app_core->SetReg(1, thread); Core::g_app_core->SetReg(1, thread->GetHandle());
LOG_TRACE(Kernel_SVC, "called entrypoint=0x%08X (%s), arg=0x%08X, stacktop=0x%08X, " LOG_TRACE(Kernel_SVC, "called entrypoint=0x%08X (%s), arg=0x%08X, stacktop=0x%08X, "
"threadpriority=0x%08X, processorid=0x%08X : created handle=0x%08X", entry_point, "threadpriority=0x%08X, processorid=0x%08X : created handle=0x%08X", entry_point,
name.c_str(), arg, stack_top, priority, processor_id, thread); name.c_str(), arg, stack_top, priority, processor_id, thread->GetHandle());
return 0; return 0;
} }
/// Called when a thread exits /// Called when a thread exits
static u32 ExitThread() { static void ExitThread() {
Handle thread = Kernel::GetCurrentThreadHandle(); LOG_TRACE(Kernel_SVC, "called, pc=0x%08X", Core::g_app_core->GetPC());
LOG_TRACE(Kernel_SVC, "called, pc=0x%08X", Core::g_app_core->GetPC()); // PC = 0x0010545C Kernel::GetCurrentThread()->Stop(__func__);
Kernel::StopThread(thread, __func__);
HLE::Reschedule(__func__); HLE::Reschedule(__func__);
return 0;
} }
/// Gets the priority for the specified thread /// Gets the priority for the specified thread
static Result GetThreadPriority(s32* priority, Handle handle) { static Result GetThreadPriority(s32* priority, Handle handle) {
ResultVal<u32> priority_result = Kernel::GetThreadPriority(handle); const Kernel::Thread* thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
if (priority_result.Succeeded()) { if (thread == nullptr)
*priority = *priority_result; return InvalidHandle(ErrorModule::Kernel).raw;
}
return priority_result.Code().raw; *priority = thread->GetPriority();
return RESULT_SUCCESS.raw;
} }
/// Sets the priority for the specified thread /// Sets the priority for the specified thread
static Result SetThreadPriority(Handle handle, s32 priority) { static Result SetThreadPriority(Handle handle, s32 priority) {
return Kernel::SetThreadPriority(handle, priority).raw; Kernel::Thread* thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
if (thread == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
thread->SetPriority(priority);
return RESULT_SUCCESS.raw;
} }
/// Create a mutex /// Create a mutex
@ -286,8 +292,13 @@ static Result ReleaseMutex(Handle handle) {
/// Get the ID for the specified thread. /// Get the ID for the specified thread.
static Result GetThreadId(u32* thread_id, Handle handle) { static Result GetThreadId(u32* thread_id, Handle handle) {
LOG_TRACE(Kernel_SVC, "called thread=0x%08X", handle); LOG_TRACE(Kernel_SVC, "called thread=0x%08X", handle);
ResultCode result = Kernel::GetThreadId(thread_id, handle);
return result.raw; const Kernel::Thread* thread = Kernel::g_handle_table.Get<Kernel::Thread>(handle);
if (thread == nullptr)
return InvalidHandle(ErrorModule::Kernel).raw;
*thread_id = thread->GetThreadId();
return RESULT_SUCCESS.raw;
} }
/// Creates a semaphore /// Creates a semaphore
@ -375,7 +386,7 @@ static void SleepThread(s64 nanoseconds) {
Kernel::WaitCurrentThread(WAITTYPE_SLEEP); Kernel::WaitCurrentThread(WAITTYPE_SLEEP);
// Create an event to wake the thread up after the specified nanosecond delay has passed // Create an event to wake the thread up after the specified nanosecond delay has passed
Kernel::WakeThreadAfterDelay(Kernel::GetCurrentThreadHandle(), nanoseconds); Kernel::WakeThreadAfterDelay(Kernel::GetCurrentThread(), nanoseconds);
HLE::Reschedule(__func__); HLE::Reschedule(__func__);
} }
@ -407,7 +418,7 @@ const HLE::FunctionDef SVC_Table[] = {
{0x06, nullptr, "GetProcessIdealProcessor"}, {0x06, nullptr, "GetProcessIdealProcessor"},
{0x07, nullptr, "SetProcessIdealProcessor"}, {0x07, nullptr, "SetProcessIdealProcessor"},
{0x08, HLE::Wrap<CreateThread>, "CreateThread"}, {0x08, HLE::Wrap<CreateThread>, "CreateThread"},
{0x09, HLE::Wrap<ExitThread>, "ExitThread"}, {0x09, ExitThread, "ExitThread"},
{0x0A, HLE::Wrap<SleepThread>, "SleepThread"}, {0x0A, HLE::Wrap<SleepThread>, "SleepThread"},
{0x0B, HLE::Wrap<GetThreadPriority>, "GetThreadPriority"}, {0x0B, HLE::Wrap<GetThreadPriority>, "GetThreadPriority"},
{0x0C, HLE::Wrap<SetThreadPriority>, "SetThreadPriority"}, {0x0C, HLE::Wrap<SetThreadPriority>, "SetThreadPriority"},