yuzu-emu
/
yuzu-mainline
Archived
1
0
Fork 0

Merge pull request #4261 from ameerj/gc-calibration

input_common: GC Controller save and compare against analog origin state
This commit is contained in:
bunnei 2020-07-16 11:40:09 -04:00 committed by GitHub
commit a89dfc9183
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 67 additions and 36 deletions

View File

@ -25,6 +25,7 @@ Adapter::Adapter() {
LOG_INFO(Input, "GC Adapter Initialization started"); LOG_INFO(Input, "GC Adapter Initialization started");
current_status = NO_ADAPTER_DETECTED; current_status = NO_ADAPTER_DETECTED;
get_origin.fill(true);
const int init_res = libusb_init(&libusb_ctx); const int init_res = libusb_init(&libusb_ctx);
if (init_res == LIBUSB_SUCCESS) { if (init_res == LIBUSB_SUCCESS) {
@ -36,13 +37,8 @@ Adapter::Adapter() {
GCPadStatus Adapter::GetPadStatus(std::size_t port, const std::array<u8, 37>& adapter_payload) { GCPadStatus Adapter::GetPadStatus(std::size_t port, const std::array<u8, 37>& adapter_payload) {
GCPadStatus pad = {}; GCPadStatus pad = {};
bool get_origin = false;
ControllerTypes type = ControllerTypes(adapter_payload[1 + (9 * port)] >> 4); ControllerTypes type = ControllerTypes(adapter_payload[1 + (9 * port)] >> 4);
if (type != ControllerTypes::None) {
get_origin = true;
}
adapter_controllers_status[port] = type; adapter_controllers_status[port] = type;
static constexpr std::array<PadButton, 8> b1_buttons{ static constexpr std::array<PadButton, 8> b1_buttons{
@ -58,6 +54,11 @@ GCPadStatus Adapter::GetPadStatus(std::size_t port, const std::array<u8, 37>& ad
PadButton::PAD_TRIGGER_L, PadButton::PAD_TRIGGER_L,
}; };
if (adapter_controllers_status[port] == ControllerTypes::None && !get_origin[port]) {
// Controller may have been disconnected, recalibrate if reconnected.
get_origin[port] = true;
}
if (adapter_controllers_status[port] != ControllerTypes::None) { if (adapter_controllers_status[port] != ControllerTypes::None) {
const u8 b1 = adapter_payload[1 + (9 * port) + 1]; const u8 b1 = adapter_payload[1 + (9 * port) + 1];
const u8 b2 = adapter_payload[1 + (9 * port) + 2]; const u8 b2 = adapter_payload[1 + (9 * port) + 2];
@ -74,16 +75,22 @@ GCPadStatus Adapter::GetPadStatus(std::size_t port, const std::array<u8, 37>& ad
} }
} }
if (get_origin) {
pad.button |= PAD_GET_ORIGIN;
}
pad.stick_x = adapter_payload[1 + (9 * port) + 3]; pad.stick_x = adapter_payload[1 + (9 * port) + 3];
pad.stick_y = adapter_payload[1 + (9 * port) + 4]; pad.stick_y = adapter_payload[1 + (9 * port) + 4];
pad.substick_x = adapter_payload[1 + (9 * port) + 5]; pad.substick_x = adapter_payload[1 + (9 * port) + 5];
pad.substick_y = adapter_payload[1 + (9 * port) + 6]; pad.substick_y = adapter_payload[1 + (9 * port) + 6];
pad.trigger_left = adapter_payload[1 + (9 * port) + 7]; pad.trigger_left = adapter_payload[1 + (9 * port) + 7];
pad.trigger_right = adapter_payload[1 + (9 * port) + 8]; pad.trigger_right = adapter_payload[1 + (9 * port) + 8];
if (get_origin[port]) {
origin_status[port].stick_x = pad.stick_x;
origin_status[port].stick_y = pad.stick_y;
origin_status[port].substick_x = pad.substick_x;
origin_status[port].substick_y = pad.substick_y;
origin_status[port].trigger_left = pad.trigger_left;
origin_status[port].trigger_right = pad.trigger_right;
get_origin[port] = false;
}
} }
return pad; return pad;
} }
@ -132,31 +139,31 @@ void Adapter::Read() {
for (std::size_t port = 0; port < pads.size(); ++port) { for (std::size_t port = 0; port < pads.size(); ++port) {
pads[port] = GetPadStatus(port, adapter_payload_copy); pads[port] = GetPadStatus(port, adapter_payload_copy);
if (DeviceConnected(port) && configuring) { if (DeviceConnected(port) && configuring) {
if (pads[port].button != PAD_GET_ORIGIN) { if (pads[port].button != 0) {
pad_queue[port].Push(pads[port]); pad_queue[port].Push(pads[port]);
} }
// Accounting for a threshold here because of some controller variance // Accounting for a threshold here because of some controller variance
if (pads[port].stick_x > pads[port].MAIN_STICK_CENTER_X + pads[port].THRESHOLD || if (pads[port].stick_x > origin_status[port].stick_x + pads[port].THRESHOLD ||
pads[port].stick_x < pads[port].MAIN_STICK_CENTER_X - pads[port].THRESHOLD) { pads[port].stick_x < origin_status[port].stick_x - pads[port].THRESHOLD) {
pads[port].axis = GCAdapter::PadAxes::StickX; pads[port].axis = GCAdapter::PadAxes::StickX;
pads[port].axis_value = pads[port].stick_x; pads[port].axis_value = pads[port].stick_x;
pad_queue[port].Push(pads[port]); pad_queue[port].Push(pads[port]);
} }
if (pads[port].stick_y > pads[port].MAIN_STICK_CENTER_Y + pads[port].THRESHOLD || if (pads[port].stick_y > origin_status[port].stick_y + pads[port].THRESHOLD ||
pads[port].stick_y < pads[port].MAIN_STICK_CENTER_Y - pads[port].THRESHOLD) { pads[port].stick_y < origin_status[port].stick_y - pads[port].THRESHOLD) {
pads[port].axis = GCAdapter::PadAxes::StickY; pads[port].axis = GCAdapter::PadAxes::StickY;
pads[port].axis_value = pads[port].stick_y; pads[port].axis_value = pads[port].stick_y;
pad_queue[port].Push(pads[port]); pad_queue[port].Push(pads[port]);
} }
if (pads[port].substick_x > pads[port].C_STICK_CENTER_X + pads[port].THRESHOLD || if (pads[port].substick_x > origin_status[port].substick_x + pads[port].THRESHOLD ||
pads[port].substick_x < pads[port].C_STICK_CENTER_X - pads[port].THRESHOLD) { pads[port].substick_x < origin_status[port].substick_x - pads[port].THRESHOLD) {
pads[port].axis = GCAdapter::PadAxes::SubstickX; pads[port].axis = GCAdapter::PadAxes::SubstickX;
pads[port].axis_value = pads[port].substick_x; pads[port].axis_value = pads[port].substick_x;
pad_queue[port].Push(pads[port]); pad_queue[port].Push(pads[port]);
} }
if (pads[port].substick_y > pads[port].C_STICK_CENTER_Y + pads[port].THRESHOLD || if (pads[port].substick_y > origin_status[port].substick_y + pads[port].THRESHOLD ||
pads[port].substick_y < pads[port].C_STICK_CENTER_Y - pads[port].THRESHOLD) { pads[port].substick_y < origin_status[port].substick_y - pads[port].THRESHOLD) {
pads[port].axis = GCAdapter::PadAxes::SubstickY; pads[port].axis = GCAdapter::PadAxes::SubstickY;
pads[port].axis_value = pads[port].substick_y; pads[port].axis_value = pads[port].substick_y;
pad_queue[port].Push(pads[port]); pad_queue[port].Push(pads[port]);
@ -237,6 +244,9 @@ void Adapter::Setup() {
} }
libusb_free_device_list(devices, 1); libusb_free_device_list(devices, 1);
} }
// Break out of the ScanThreadFunc() loop that is constantly looking for the device
// Assumes user has GC adapter plugged in before launch to use the adapter
detect_thread_running = false;
} }
bool Adapter::CheckDeviceAccess(libusb_device* device) { bool Adapter::CheckDeviceAccess(libusb_device* device) {
@ -345,6 +355,7 @@ void Adapter::Reset() {
adapter_input_thread.join(); adapter_input_thread.join();
adapter_controllers_status.fill(ControllerTypes::None); adapter_controllers_status.fill(ControllerTypes::None);
get_origin.fill(true);
current_status = NO_ADAPTER_DETECTED; current_status = NO_ADAPTER_DETECTED;
if (usb_adapter_handle) { if (usb_adapter_handle) {
@ -367,6 +378,7 @@ void Adapter::ResetDeviceType(std::size_t port) {
} }
void Adapter::BeginConfiguration() { void Adapter::BeginConfiguration() {
get_origin.fill(true);
for (auto& pq : pad_queue) { for (auto& pq : pad_queue) {
pq.Clear(); pq.Clear();
} }
@ -396,4 +408,25 @@ const std::array<GCState, 4>& Adapter::GetPadState() const {
return state; return state;
} }
int Adapter::GetOriginValue(int port, int axis) const {
const auto& status = origin_status[port];
switch (static_cast<PadAxes>(axis)) {
case PadAxes::StickX:
return status.stick_x;
case PadAxes::StickY:
return status.stick_y;
case PadAxes::SubstickX:
return status.substick_x;
case PadAxes::SubstickY:
return status.substick_y;
case PadAxes::TriggerLeft:
return status.trigger_left;
case PadAxes::TriggerRight:
return status.trigger_right;
default:
return 0;
}
}
} // namespace GCAdapter } // namespace GCAdapter

View File

@ -17,12 +17,6 @@ struct libusb_device_handle;
namespace GCAdapter { namespace GCAdapter {
enum {
PAD_USE_ORIGIN = 0x0080,
PAD_GET_ORIGIN = 0x2000,
PAD_ERR_STATUS = 0x8000,
};
enum class PadButton { enum class PadButton {
PAD_BUTTON_LEFT = 0x0001, PAD_BUTTON_LEFT = 0x0001,
PAD_BUTTON_RIGHT = 0x0002, PAD_BUTTON_RIGHT = 0x0002,
@ -109,6 +103,8 @@ public:
std::array<GCState, 4>& GetPadState(); std::array<GCState, 4>& GetPadState();
const std::array<GCState, 4>& GetPadState() const; const std::array<GCState, 4>& GetPadState() const;
int GetOriginValue(int port, int axis) const;
private: private:
GCPadStatus GetPadStatus(std::size_t port, const std::array<u8, 37>& adapter_payload); GCPadStatus GetPadStatus(std::size_t port, const std::array<u8, 37>& adapter_payload);
@ -159,6 +155,8 @@ private:
std::array<Common::SPSCQueue<GCPadStatus>, 4> pad_queue; std::array<Common::SPSCQueue<GCPadStatus>, 4> pad_queue;
std::array<GCState, 4> state; std::array<GCState, 4> state;
std::array<bool, 4> get_origin;
std::array<GCPadStatus, 4> origin_status;
}; };
} // namespace GCAdapter } // namespace GCAdapter

View File

@ -38,18 +38,12 @@ public:
explicit GCAxisButton(int port_, int axis_, float threshold_, bool trigger_if_greater_, explicit GCAxisButton(int port_, int axis_, float threshold_, bool trigger_if_greater_,
GCAdapter::Adapter* adapter) GCAdapter::Adapter* adapter)
: port(port_), axis(axis_), threshold(threshold_), trigger_if_greater(trigger_if_greater_), : port(port_), axis(axis_), threshold(threshold_), trigger_if_greater(trigger_if_greater_),
gcadapter(adapter) { gcadapter(adapter), origin_value(adapter->GetOriginValue(port_, axis_)) {}
// L/R triggers range is only in positive direction beginning near 0
// 0.0 threshold equates to near half trigger press, but threshold accounts for variability.
if (axis > 3) {
threshold *= -0.5;
}
}
bool GetStatus() const override { bool GetStatus() const override {
if (gcadapter->DeviceConnected(port)) { if (gcadapter->DeviceConnected(port)) {
const float axis_value = const float current_axis_value = gcadapter->GetPadState()[port].axes.at(axis);
(gcadapter->GetPadState()[port].axes.at(axis) - 128.0f) / 128.0f; const float axis_value = (current_axis_value - origin_value) / 128.0f;
if (trigger_if_greater) { if (trigger_if_greater) {
// TODO: Might be worthwile to set a slider for the trigger threshold. It is // TODO: Might be worthwile to set a slider for the trigger threshold. It is
// currently always set to 0.5 in configure_input_player.cpp ZL/ZR HandleClick // currently always set to 0.5 in configure_input_player.cpp ZL/ZR HandleClick
@ -66,6 +60,7 @@ private:
float threshold; float threshold;
bool trigger_if_greater; bool trigger_if_greater;
GCAdapter::Adapter* gcadapter; GCAdapter::Adapter* gcadapter;
const float origin_value;
}; };
GCButtonFactory::GCButtonFactory(std::shared_ptr<GCAdapter::Adapter> adapter_) GCButtonFactory::GCButtonFactory(std::shared_ptr<GCAdapter::Adapter> adapter_)
@ -155,15 +150,18 @@ void GCButtonFactory::EndConfiguration() {
class GCAnalog final : public Input::AnalogDevice { class GCAnalog final : public Input::AnalogDevice {
public: public:
GCAnalog(int port_, int axis_x_, int axis_y_, float deadzone_, GCAdapter::Adapter* adapter) GCAnalog(int port_, int axis_x_, int axis_y_, float deadzone_, GCAdapter::Adapter* adapter)
: port(port_), axis_x(axis_x_), axis_y(axis_y_), deadzone(deadzone_), gcadapter(adapter) {} : port(port_), axis_x(axis_x_), axis_y(axis_y_), deadzone(deadzone_), gcadapter(adapter),
origin_value_x(adapter->GetOriginValue(port_, axis_x_)),
origin_value_y(adapter->GetOriginValue(port_, axis_y_)) {}
float GetAxis(int axis) const { float GetAxis(int axis) const {
if (gcadapter->DeviceConnected(port)) { if (gcadapter->DeviceConnected(port)) {
std::lock_guard lock{mutex}; std::lock_guard lock{mutex};
const auto origin_value = axis % 2 == 0 ? origin_value_x : origin_value_y;
// division is not by a perfect 128 to account for some variance in center location // division is not by a perfect 128 to account for some variance in center location
// e.g. my device idled at 131 in X, 120 in Y, and full range of motion was in range // e.g. my device idled at 131 in X, 120 in Y, and full range of motion was in range
// [20-230] // [20-230]
return (gcadapter->GetPadState()[port].axes.at(axis) - 128.0f) / 95.0f; return (gcadapter->GetPadState()[port].axes.at(axis) - origin_value) / 95.0f;
} }
return 0.0f; return 0.0f;
} }
@ -215,8 +213,10 @@ private:
const int axis_x; const int axis_x;
const int axis_y; const int axis_y;
const float deadzone; const float deadzone;
mutable std::mutex mutex;
GCAdapter::Adapter* gcadapter; GCAdapter::Adapter* gcadapter;
const float origin_value_x;
const float origin_value_y;
mutable std::mutex mutex;
}; };
/// An analog device factory that creates analog devices from GC Adapter /// An analog device factory that creates analog devices from GC Adapter