core: core_timing_util: Optimize core timing math.
- Avoids a lot of unnecessary 128-bit math for imperceptible accuracy.
This commit is contained in:
parent
592a649918
commit
f3345e84ad
|
@ -19,7 +19,6 @@ add_library(core STATIC
|
||||||
core.h
|
core.h
|
||||||
core_timing.cpp
|
core_timing.cpp
|
||||||
core_timing.h
|
core_timing.h
|
||||||
core_timing_util.cpp
|
|
||||||
core_timing_util.h
|
core_timing_util.h
|
||||||
cpu_manager.cpp
|
cpu_manager.cpp
|
||||||
cpu_manager.h
|
cpu_manager.h
|
||||||
|
|
|
@ -1,84 +0,0 @@
|
||||||
// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
|
|
||||||
// Licensed under GPLv2+
|
|
||||||
// Refer to the license.txt file included.
|
|
||||||
|
|
||||||
#include "core/core_timing_util.h"
|
|
||||||
|
|
||||||
#include <cinttypes>
|
|
||||||
#include <limits>
|
|
||||||
#include "common/logging/log.h"
|
|
||||||
#include "common/uint128.h"
|
|
||||||
#include "core/hardware_properties.h"
|
|
||||||
|
|
||||||
namespace Core::Timing {
|
|
||||||
|
|
||||||
constexpr u64 MAX_VALUE_TO_MULTIPLY = std::numeric_limits<s64>::max() / Hardware::BASE_CLOCK_RATE;
|
|
||||||
|
|
||||||
s64 msToCycles(std::chrono::milliseconds ms) {
|
|
||||||
if (static_cast<u64>(ms.count() / 1000) > MAX_VALUE_TO_MULTIPLY) {
|
|
||||||
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
|
|
||||||
return std::numeric_limits<s64>::max();
|
|
||||||
}
|
|
||||||
if (static_cast<u64>(ms.count()) > MAX_VALUE_TO_MULTIPLY) {
|
|
||||||
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
|
|
||||||
return Hardware::BASE_CLOCK_RATE * (ms.count() / 1000);
|
|
||||||
}
|
|
||||||
return (Hardware::BASE_CLOCK_RATE * ms.count()) / 1000;
|
|
||||||
}
|
|
||||||
|
|
||||||
s64 usToCycles(std::chrono::microseconds us) {
|
|
||||||
if (static_cast<u64>(us.count() / 1000000) > MAX_VALUE_TO_MULTIPLY) {
|
|
||||||
LOG_ERROR(Core_Timing, "Integer overflow, use max value");
|
|
||||||
return std::numeric_limits<s64>::max();
|
|
||||||
}
|
|
||||||
if (static_cast<u64>(us.count()) > MAX_VALUE_TO_MULTIPLY) {
|
|
||||||
LOG_DEBUG(Core_Timing, "Time very big, do rounding");
|
|
||||||
return Hardware::BASE_CLOCK_RATE * (us.count() / 1000000);
|
|
||||||
}
|
|
||||||
return (Hardware::BASE_CLOCK_RATE * us.count()) / 1000000;
|
|
||||||
}
|
|
||||||
|
|
||||||
s64 nsToCycles(std::chrono::nanoseconds ns) {
|
|
||||||
const u128 temporal = Common::Multiply64Into128(ns.count(), Hardware::BASE_CLOCK_RATE);
|
|
||||||
return Common::Divide128On32(temporal, static_cast<u32>(1000000000)).first;
|
|
||||||
}
|
|
||||||
|
|
||||||
u64 msToClockCycles(std::chrono::milliseconds ns) {
|
|
||||||
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
|
|
||||||
return Common::Divide128On32(temp, 1000).first;
|
|
||||||
}
|
|
||||||
|
|
||||||
u64 usToClockCycles(std::chrono::microseconds ns) {
|
|
||||||
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
|
|
||||||
return Common::Divide128On32(temp, 1000000).first;
|
|
||||||
}
|
|
||||||
|
|
||||||
u64 nsToClockCycles(std::chrono::nanoseconds ns) {
|
|
||||||
const u128 temp = Common::Multiply64Into128(ns.count(), Hardware::CNTFREQ);
|
|
||||||
return Common::Divide128On32(temp, 1000000000).first;
|
|
||||||
}
|
|
||||||
|
|
||||||
u64 CpuCyclesToClockCycles(u64 ticks) {
|
|
||||||
const u128 temporal = Common::Multiply64Into128(ticks, Hardware::CNTFREQ);
|
|
||||||
return Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
|
|
||||||
}
|
|
||||||
|
|
||||||
std::chrono::milliseconds CyclesToMs(s64 cycles) {
|
|
||||||
const u128 temporal = Common::Multiply64Into128(cycles, 1000);
|
|
||||||
u64 ms = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
|
|
||||||
return std::chrono::milliseconds(ms);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::chrono::nanoseconds CyclesToNs(s64 cycles) {
|
|
||||||
const u128 temporal = Common::Multiply64Into128(cycles, 1000000000);
|
|
||||||
u64 ns = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
|
|
||||||
return std::chrono::nanoseconds(ns);
|
|
||||||
}
|
|
||||||
|
|
||||||
std::chrono::microseconds CyclesToUs(s64 cycles) {
|
|
||||||
const u128 temporal = Common::Multiply64Into128(cycles, 1000000);
|
|
||||||
u64 us = Common::Divide128On32(temporal, static_cast<u32>(Hardware::BASE_CLOCK_RATE)).first;
|
|
||||||
return std::chrono::microseconds(us);
|
|
||||||
}
|
|
||||||
|
|
||||||
} // namespace Core::Timing
|
|
|
@ -1,24 +1,59 @@
|
||||||
// Copyright 2008 Dolphin Emulator Project / 2017 Citra Emulator Project
|
// Copyright 2020 yuzu Emulator Project
|
||||||
// Licensed under GPLv2+
|
// Licensed under GPLv2 or any later version
|
||||||
// Refer to the license.txt file included.
|
// Refer to the license.txt file included.
|
||||||
|
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include <chrono>
|
#include <chrono>
|
||||||
|
|
||||||
#include "common/common_types.h"
|
#include "common/common_types.h"
|
||||||
|
#include "core/hardware_properties.h"
|
||||||
|
|
||||||
namespace Core::Timing {
|
namespace Core::Timing {
|
||||||
|
|
||||||
s64 msToCycles(std::chrono::milliseconds ms);
|
namespace detail {
|
||||||
s64 usToCycles(std::chrono::microseconds us);
|
constexpr u64 CNTFREQ_ADJUSTED = Hardware::CNTFREQ / 1000;
|
||||||
s64 nsToCycles(std::chrono::nanoseconds ns);
|
constexpr u64 BASE_CLOCK_RATE_ADJUSTED = Hardware::BASE_CLOCK_RATE / 1000;
|
||||||
u64 msToClockCycles(std::chrono::milliseconds ns);
|
} // namespace detail
|
||||||
u64 usToClockCycles(std::chrono::microseconds ns);
|
|
||||||
u64 nsToClockCycles(std::chrono::nanoseconds ns);
|
|
||||||
std::chrono::milliseconds CyclesToMs(s64 cycles);
|
|
||||||
std::chrono::nanoseconds CyclesToNs(s64 cycles);
|
|
||||||
std::chrono::microseconds CyclesToUs(s64 cycles);
|
|
||||||
|
|
||||||
u64 CpuCyclesToClockCycles(u64 ticks);
|
[[nodiscard]] constexpr s64 msToCycles(std::chrono::milliseconds ms) {
|
||||||
|
return ms.count() * detail::BASE_CLOCK_RATE_ADJUSTED;
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr s64 usToCycles(std::chrono::microseconds us) {
|
||||||
|
return us.count() * detail::BASE_CLOCK_RATE_ADJUSTED / 1000;
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr s64 nsToCycles(std::chrono::nanoseconds ns) {
|
||||||
|
return ns.count() * detail::BASE_CLOCK_RATE_ADJUSTED / 1000000;
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr u64 msToClockCycles(std::chrono::milliseconds ms) {
|
||||||
|
return static_cast<u64>(ms.count()) * detail::CNTFREQ_ADJUSTED;
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr u64 usToClockCycles(std::chrono::microseconds us) {
|
||||||
|
return us.count() * detail::CNTFREQ_ADJUSTED / 1000;
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr u64 nsToClockCycles(std::chrono::nanoseconds ns) {
|
||||||
|
return ns.count() * detail::CNTFREQ_ADJUSTED / 1000000;
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr u64 CpuCyclesToClockCycles(u64 ticks) {
|
||||||
|
return ticks * detail::CNTFREQ_ADJUSTED / detail::BASE_CLOCK_RATE_ADJUSTED;
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr std::chrono::milliseconds CyclesToMs(s64 cycles) {
|
||||||
|
return std::chrono::milliseconds(cycles / detail::BASE_CLOCK_RATE_ADJUSTED);
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr std::chrono::nanoseconds CyclesToNs(s64 cycles) {
|
||||||
|
return std::chrono::nanoseconds(cycles * 1000000 / detail::BASE_CLOCK_RATE_ADJUSTED);
|
||||||
|
}
|
||||||
|
|
||||||
|
[[nodiscard]] constexpr std::chrono::microseconds CyclesToUs(s64 cycles) {
|
||||||
|
return std::chrono::microseconds(cycles * 1000 / detail::BASE_CLOCK_RATE_ADJUSTED);
|
||||||
|
}
|
||||||
|
|
||||||
} // namespace Core::Timing
|
} // namespace Core::Timing
|
||||||
|
|
Reference in New Issue