yuzu-emu
/
yuzu
Archived
1
0
Fork 0
This repository has been archived on 2024-03-23. You can view files and clone it, but cannot push or open issues or pull requests.
yuzu/src/core/crypto/partition_data_manager.cpp

602 lines
25 KiB
C++
Raw Normal View History

// Copyright 2018 yuzu emulator team
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
// NOTE TO FUTURE MAINTAINERS:
// When a new version of switch cryptography is released,
// hash the new keyblob source and master key and add the hashes to
// the arrays below.
#include <algorithm>
#include <array>
#include <cctype>
#include <cstring>
#include <mbedtls/sha256.h>
#include "common/assert.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/hex_util.h"
#include "common/logging/log.h"
#include "common/string_util.h"
#include "common/swap.h"
#include "core/crypto/key_manager.h"
#include "core/crypto/partition_data_manager.h"
#include "core/crypto/xts_encryption_layer.h"
#include "core/file_sys/vfs.h"
#include "core/file_sys/vfs_offset.h"
using namespace Common;
namespace Core::Crypto {
struct Package2Header {
std::array<u8, 0x100> signature;
Key128 header_ctr;
std::array<Key128, 4> section_ctr;
u32_le magic;
u32_le base_offset;
INSERT_PADDING_BYTES(4);
u8 version_max;
u8 version_min;
INSERT_PADDING_BYTES(2);
std::array<u32_le, 4> section_size;
std::array<u32_le, 4> section_offset;
std::array<SHA256Hash, 4> section_hash;
};
static_assert(sizeof(Package2Header) == 0x200, "Package2Header has incorrect size.");
struct INIHeader {
u32_le magic;
u32_le size;
u32_le process_count;
INSERT_PADDING_BYTES(4);
};
static_assert(sizeof(INIHeader) == 0x10, "INIHeader has incorrect size.");
struct SectionHeader {
u32_le offset;
u32_le size_decompressed;
u32_le size_compressed;
u32_le attribute;
};
static_assert(sizeof(SectionHeader) == 0x10, "SectionHeader has incorrect size.");
struct KIPHeader {
u32_le magic;
std::array<char, 12> name;
u64_le title_id;
u32_le category;
u8 priority;
u8 core;
INSERT_PADDING_BYTES(1);
u8 flags;
std::array<SectionHeader, 6> sections;
std::array<u32, 0x20> capabilities;
};
static_assert(sizeof(KIPHeader) == 0x100, "KIPHeader has incorrect size.");
const std::array<SHA256Hash, 0x10> source_hashes{
"B24BD293259DBC7AC5D63F88E60C59792498E6FC5443402C7FFE87EE8B61A3F0"_array32, // keyblob_mac_key_source
"7944862A3A5C31C6720595EFD302245ABD1B54CCDCF33000557681E65C5664A4"_array32, // master_key_source
"21E2DF100FC9E094DB51B47B9B1D6E94ED379DB8B547955BEF8FE08D8DD35603"_array32, // package2_key_source
"FC02B9D37B42D7A1452E71444F1F700311D1132E301A83B16062E72A78175085"_array32, // aes_kek_generation_source
"FBD10056999EDC7ACDB96098E47E2C3606230270D23281E671F0F389FC5BC585"_array32, // aes_key_generation_source
"C48B619827986C7F4E3081D59DB2B460C84312650E9A8E6B458E53E8CBCA4E87"_array32, // titlekek_source
"04AD66143C726B2A139FB6B21128B46F56C553B2B3887110304298D8D0092D9E"_array32, // key_area_key_application_source
"FD434000C8FF2B26F8E9A9D2D2C12F6BE5773CBB9DC86300E1BD99F8EA33A417"_array32, // key_area_key_ocean_source
"1F17B1FD51AD1C2379B58F152CA4912EC2106441E51722F38700D5937A1162F7"_array32, // key_area_key_system_source
"6B2ED877C2C52334AC51E59ABFA7EC457F4A7D01E46291E9F2EAA45F011D24B7"_array32, // sd_card_kek_source
"D482743563D3EA5DCDC3B74E97C9AC8A342164FA041A1DC80F17F6D31E4BC01C"_array32, // sd_card_save_key_source
"2E751CECF7D93A2B957BD5FFCB082FD038CC2853219DD3092C6DAB9838F5A7CC"_array32, // sd_card_nca_key_source
"1888CAED5551B3EDE01499E87CE0D86827F80820EFB275921055AA4E2ABDFFC2"_array32, // header_kek_source
"8F783E46852DF6BE0BA4E19273C4ADBAEE16380043E1B8C418C4089A8BD64AA6"_array32, // header_key_source
"D1757E52F1AE55FA882EC690BC6F954AC46A83DC22F277F8806BD55577C6EED7"_array32, // rsa_kek_seed3
"FC02B9D37B42D7A1452E71444F1F700311D1132E301A83B16062E72A78175085"_array32, // rsa_kek_mask0
};
const std::array<SHA256Hash, 0x20> keyblob_source_hashes{
"8A06FE274AC491436791FDB388BCDD3AB9943BD4DEF8094418CDAC150FD73786"_array32, // keyblob_key_source_00
"2D5CAEB2521FEF70B47E17D6D0F11F8CE2C1E442A979AD8035832C4E9FBCCC4B"_array32, // keyblob_key_source_01
"61C5005E713BAE780641683AF43E5F5C0E03671117F702F401282847D2FC6064"_array32, // keyblob_key_source_02
"8E9795928E1C4428E1B78F0BE724D7294D6934689C11B190943923B9D5B85903"_array32, // keyblob_key_source_03
"95FA33AF95AFF9D9B61D164655B32710ED8D615D46C7D6CC3CC70481B686B402"_array32, // keyblob_key_source_04
"3F5BE7B3C8B1ABD8C10B4B703D44766BA08730562C172A4FE0D6B866B3E2DB3E"_array32, // keyblob_key_source_05
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_06
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_07
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_08
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_09
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_0A
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_0B
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_0C
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_0D
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_0E
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_0F
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_10
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_11
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_12
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_13
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_14
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_15
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_16
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_17
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_18
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_19
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_1A
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_1B
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_1C
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_1D
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_1E
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // keyblob_key_source_1F
};
const std::array<SHA256Hash, 0x20> master_key_hashes{
"0EE359BE3C864BB0782E1D70A718A0342C551EED28C369754F9C4F691BECF7CA"_array32, // master_key_00
"4FE707B7E4ABDAF727C894AAF13B1351BFE2AC90D875F73B2E20FA94B9CC661E"_array32, // master_key_01
"79277C0237A2252EC3DFAC1F7C359C2B3D121E9DB15BB9AB4C2B4408D2F3AE09"_array32, // master_key_02
"4F36C565D13325F65EE134073C6A578FFCB0008E02D69400836844EAB7432754"_array32, // master_key_03
"75FF1D95D26113550EE6FCC20ACB58E97EDEB3A2FF52543ED5AEC63BDCC3DA50"_array32, // master_key_04
"EBE2BCD6704673EC0F88A187BB2AD9F1CC82B718C389425941BDC194DC46B0DD"_array32, // master_key_05
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_06
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_07
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_08
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_09
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_0A
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_0B
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_0C
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_0D
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_0E
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_0F
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_10
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_11
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_12
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_13
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_14
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_15
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_16
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_17
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_18
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_19
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_1A
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_1B
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_1C
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_1D
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_1E
"0000000000000000000000000000000000000000000000000000000000000000"_array32, // master_key_1F
};
static std::vector<u8> DecompressBLZ(const std::vector<u8>& in) {
const auto data_size = in.size() - 0xC;
u32 compressed_size{};
u32 init_index{};
u32 additional_size{};
std::memcpy(&compressed_size, in.data() + data_size, sizeof(u32));
std::memcpy(&init_index, in.data() + data_size + 0x4, sizeof(u32));
std::memcpy(&additional_size, in.data() + data_size + 0x8, sizeof(u32));
std::vector<u8> out(in.size() + additional_size);
if (compressed_size == in.size())
std::memcpy(out.data(), in.data() + in.size() - compressed_size, compressed_size);
else
std::memcpy(out.data(), in.data(), compressed_size);
auto index = in.size() - init_index;
auto out_index = out.size();
while (out_index > 0) {
--index;
auto control = in[index];
for (size_t i = 0; i < 8; ++i) {
if ((control & 0x80) > 0) {
ASSERT(index >= 2);
index -= 2;
u64 segment_offset = in[index] | in[index + 1] << 8;
u64 segment_size = ((segment_offset >> 12) & 0xF) + 3;
segment_offset &= 0xFFF;
segment_offset += 3;
if (out_index < segment_size)
segment_size = out_index;
ASSERT(out_index >= segment_size);
out_index -= segment_size;
for (size_t j = 0; j < segment_size; ++j) {
ASSERT(out_index + j + segment_offset < out.size());
out[out_index + j] = out[out_index + j + segment_offset];
}
} else {
ASSERT(out_index >= 1);
--out_index;
--index;
out[out_index] = in[index];
}
control <<= 1;
if (out_index == 0)
return out;
}
}
return out;
}
static u8 CalculateMaxKeyblobSourceHash() {
for (s8 i = 0x1F; i >= 0; --i) {
if (keyblob_source_hashes[i] != SHA256Hash{})
return static_cast<u8>(i + 1);
}
return 0;
}
const u8 PartitionDataManager::MAX_KEYBLOB_SOURCE_HASH = CalculateMaxKeyblobSourceHash();
template <size_t key_size = 0x10>
std::array<u8, key_size> FindKeyFromHex(const std::vector<u8>& binary,
const std::array<u8, 0x20>& hash) {
if (binary.size() < key_size)
return {};
std::array<u8, 0x20> temp{};
for (size_t i = 0; i < binary.size() - key_size; ++i) {
mbedtls_sha256(binary.data() + i, key_size, temp.data(), 0);
if (temp != hash)
continue;
std::array<u8, key_size> out{};
std::memcpy(out.data(), binary.data() + i, key_size);
return out;
}
return {};
}
std::array<u8, 16> FindKeyFromHex16(const std::vector<u8>& binary, std::array<u8, 32> hash) {
return FindKeyFromHex<0x10>(binary, hash);
}
static std::array<Key128, 0x20> FindEncryptedMasterKeyFromHex(const std::vector<u8>& binary,
const Key128& key) {
if (binary.size() < 0x10)
return {};
SHA256Hash temp{};
Key128 dec_temp{};
std::array<Key128, 0x20> out{};
AESCipher<Key128> cipher(key, Mode::ECB);
for (size_t i = 0; i < binary.size() - 0x10; ++i) {
cipher.Transcode(binary.data() + i, dec_temp.size(), dec_temp.data(), Op::Decrypt);
mbedtls_sha256(dec_temp.data(), dec_temp.size(), temp.data(), 0);
for (size_t k = 0; k < out.size(); ++k) {
if (temp == master_key_hashes[k]) {
out[k] = dec_temp;
break;
}
}
}
return out;
}
FileSys::VirtualFile FindFileInDirWithNames(const FileSys::VirtualDir& dir,
const std::string& name) {
auto upper = name;
std::transform(upper.begin(), upper.end(), upper.begin(), [](u8 c) { return std::toupper(c); });
for (const auto& fname : {name, name + ".bin", upper, upper + ".BIN"}) {
if (dir->GetFile(fname) != nullptr)
return dir->GetFile(fname);
}
return nullptr;
}
PartitionDataManager::PartitionDataManager(const FileSys::VirtualDir& sysdata_dir)
: boot0(FindFileInDirWithNames(sysdata_dir, "BOOT0")),
fuses(FindFileInDirWithNames(sysdata_dir, "fuse")),
kfuses(FindFileInDirWithNames(sysdata_dir, "kfuse")),
package2({
FindFileInDirWithNames(sysdata_dir, "BCPKG2-1-Normal-Main"),
FindFileInDirWithNames(sysdata_dir, "BCPKG2-2-Normal-Sub"),
FindFileInDirWithNames(sysdata_dir, "BCPKG2-3-SafeMode-Main"),
FindFileInDirWithNames(sysdata_dir, "BCPKG2-4-SafeMode-Sub"),
FindFileInDirWithNames(sysdata_dir, "BCPKG2-5-Repair-Main"),
FindFileInDirWithNames(sysdata_dir, "BCPKG2-6-Repair-Sub"),
}),
prodinfo(FindFileInDirWithNames(sysdata_dir, "PRODINFO")),
secure_monitor(FindFileInDirWithNames(sysdata_dir, "secmon")),
package1_decrypted(FindFileInDirWithNames(sysdata_dir, "pkg1_decr")),
secure_monitor_bytes(secure_monitor == nullptr ? std::vector<u8>{}
: secure_monitor->ReadAllBytes()),
package1_decrypted_bytes(package1_decrypted == nullptr ? std::vector<u8>{}
: package1_decrypted->ReadAllBytes()) {
}
PartitionDataManager::~PartitionDataManager() = default;
bool PartitionDataManager::HasBoot0() const {
return boot0 != nullptr;
}
FileSys::VirtualFile PartitionDataManager::GetBoot0Raw() const {
return boot0;
}
std::array<u8, 176> PartitionDataManager::GetEncryptedKeyblob(u8 index) const {
if (HasBoot0() && index < 32)
return GetEncryptedKeyblobs()[index];
return {};
}
std::array<std::array<u8, 176>, 32> PartitionDataManager::GetEncryptedKeyblobs() const {
if (!HasBoot0())
return {};
std::array<std::array<u8, 176>, 32> out{};
for (size_t i = 0; i < 0x20; ++i)
boot0->Read(out[i].data(), out[i].size(), 0x180000 + i * 0x200);
return out;
}
std::vector<u8> PartitionDataManager::GetSecureMonitor() const {
return secure_monitor_bytes;
}
std::array<u8, 16> PartitionDataManager::GetPackage2KeySource() const {
return FindKeyFromHex(secure_monitor_bytes, source_hashes[2]);
}
std::array<u8, 16> PartitionDataManager::GetAESKekGenerationSource() const {
return FindKeyFromHex(secure_monitor_bytes, source_hashes[3]);
}
std::array<u8, 16> PartitionDataManager::GetTitlekekSource() const {
return FindKeyFromHex(secure_monitor_bytes, source_hashes[5]);
}
std::array<std::array<u8, 16>, 32> PartitionDataManager::GetTZMasterKeys(
std::array<u8, 0x10> master_key) const {
return FindEncryptedMasterKeyFromHex(secure_monitor_bytes, master_key);
}
std::array<u8, 16> PartitionDataManager::GetRSAKekSeed3() const {
return FindKeyFromHex(secure_monitor_bytes, source_hashes[14]);
}
std::array<u8, 16> PartitionDataManager::GetRSAKekMask0() const {
return FindKeyFromHex(secure_monitor_bytes, source_hashes[15]);
}
std::vector<u8> PartitionDataManager::GetPackage1Decrypted() const {
return package1_decrypted_bytes;
}
std::array<u8, 16> PartitionDataManager::GetMasterKeySource() const {
return FindKeyFromHex(package1_decrypted_bytes, source_hashes[1]);
}
std::array<u8, 16> PartitionDataManager::GetKeyblobMACKeySource() const {
return FindKeyFromHex(package1_decrypted_bytes, source_hashes[0]);
}
std::array<u8, 16> PartitionDataManager::GetKeyblobKeySource(u8 revision) const {
if (keyblob_source_hashes[revision] == SHA256Hash{}) {
LOG_WARNING(Crypto,
"No keyblob source hash for crypto revision {:02X}! Cannot derive keys...",
revision);
}
return FindKeyFromHex(package1_decrypted_bytes, keyblob_source_hashes[revision]);
}
bool PartitionDataManager::HasFuses() const {
return fuses != nullptr;
}
FileSys::VirtualFile PartitionDataManager::GetFusesRaw() const {
return fuses;
}
std::array<u8, 16> PartitionDataManager::GetSecureBootKey() const {
if (!HasFuses())
return {};
Key128 out{};
fuses->Read(out.data(), out.size(), 0xA4);
return out;
}
bool PartitionDataManager::HasKFuses() const {
return kfuses != nullptr;
}
FileSys::VirtualFile PartitionDataManager::GetKFusesRaw() const {
return kfuses;
}
bool PartitionDataManager::HasPackage2(Package2Type type) const {
return package2.at(static_cast<size_t>(type)) != nullptr;
}
FileSys::VirtualFile PartitionDataManager::GetPackage2Raw(Package2Type type) const {
return package2.at(static_cast<size_t>(type));
}
bool AttemptDecrypt(const std::array<u8, 16>& key, Package2Header& header) {
const std::vector<u8> iv(header.header_ctr.begin(), header.header_ctr.end());
Package2Header temp = header;
AESCipher<Key128> cipher(key, Mode::CTR);
cipher.SetIV(iv);
cipher.Transcode(&temp.header_ctr, sizeof(Package2Header) - 0x100, &temp.header_ctr,
Op::Decrypt);
if (temp.magic == Common::MakeMagic('P', 'K', '2', '1')) {
header = temp;
return true;
}
return false;
}
void PartitionDataManager::DecryptPackage2(std::array<std::array<u8, 16>, 0x20> package2_keys,
Package2Type type) {
FileSys::VirtualFile file = std::make_shared<FileSys::OffsetVfsFile>(
package2[static_cast<size_t>(type)],
package2[static_cast<size_t>(type)]->GetSize() - 0x4000, 0x4000);
Package2Header header{};
if (file->ReadObject(&header) != sizeof(Package2Header))
return;
u8 revision = 0xFF;
if (header.magic != Common::MakeMagic('P', 'K', '2', '1')) {
for (size_t i = 0; i < package2_keys.size(); ++i) {
if (AttemptDecrypt(package2_keys[i], header))
revision = i;
}
}
if (header.magic != Common::MakeMagic('P', 'K', '2', '1'))
return;
const std::vector<u8> s1_iv(header.section_ctr[1].begin(), header.section_ctr[1].end());
const auto a = std::make_shared<FileSys::OffsetVfsFile>(
file, header.section_size[1], header.section_size[0] + sizeof(Package2Header));
auto c = a->ReadAllBytes();
AESCipher<Key128> cipher(package2_keys[revision], Mode::CTR);
cipher.SetIV(s1_iv);
cipher.Transcode(c.data(), c.size(), c.data(), Op::Decrypt);
// package2_decrypted[static_cast<size_t>(type)] = s1;
INIHeader ini;
std::memcpy(&ini, c.data(), sizeof(INIHeader));
if (ini.magic != Common::MakeMagic('I', 'N', 'I', '1'))
return;
std::map<u64, KIPHeader> kips{};
u64 offset = sizeof(INIHeader);
for (size_t i = 0; i < ini.process_count; ++i) {
KIPHeader kip;
std::memcpy(&kip, c.data() + offset, sizeof(KIPHeader));
if (kip.magic != Common::MakeMagic('K', 'I', 'P', '1'))
return;
kips.emplace(offset, kip);
const auto name =
Common::StringFromFixedZeroTerminatedBuffer(kip.name.data(), kip.name.size());
if (name != "FS" && name != "spl") {
offset += sizeof(KIPHeader) + kip.sections[0].size_compressed +
kip.sections[1].size_compressed + kip.sections[2].size_compressed;
continue;
}
std::vector<u8> text(kip.sections[0].size_compressed);
std::vector<u8> rodata(kip.sections[1].size_compressed);
std::vector<u8> data(kip.sections[2].size_compressed);
u64 offset_sec = sizeof(KIPHeader) + offset;
std::memcpy(text.data(), c.data() + offset_sec, text.size());
offset_sec += text.size();
std::memcpy(rodata.data(), c.data() + offset_sec, rodata.size());
offset_sec += rodata.size();
std::memcpy(data.data(), c.data() + offset_sec, data.size());
offset += sizeof(KIPHeader) + kip.sections[0].size_compressed +
kip.sections[1].size_compressed + kip.sections[2].size_compressed;
text = DecompressBLZ(text);
rodata = DecompressBLZ(rodata);
data = DecompressBLZ(data);
std::vector<u8> out(text.size() + rodata.size() + data.size());
std::memcpy(out.data(), text.data(), text.size());
std::memcpy(out.data() + text.size(), rodata.data(), rodata.size());
std::memcpy(out.data() + text.size() + rodata.size(), data.data(), data.size());
if (name == "FS")
package2_fs[static_cast<size_t>(type)] = out;
else if (name == "spl")
package2_spl[static_cast<size_t>(type)] = out;
}
}
const std::vector<u8>& PartitionDataManager::GetPackage2FSDecompressed(Package2Type type) const {
return package2_fs.at(static_cast<size_t>(type));
}
std::array<u8, 16> PartitionDataManager::GetKeyAreaKeyApplicationSource(Package2Type type) const {
return FindKeyFromHex(package2_fs.at(static_cast<size_t>(type)), source_hashes[6]);
}
std::array<u8, 16> PartitionDataManager::GetKeyAreaKeyOceanSource(Package2Type type) const {
return FindKeyFromHex(package2_fs.at(static_cast<size_t>(type)), source_hashes[7]);
}
std::array<u8, 16> PartitionDataManager::GetKeyAreaKeySystemSource(Package2Type type) const {
return FindKeyFromHex(package2_fs.at(static_cast<size_t>(type)), source_hashes[8]);
}
std::array<u8, 16> PartitionDataManager::GetSDKekSource(Package2Type type) const {
return FindKeyFromHex(package2_fs.at(static_cast<size_t>(type)), source_hashes[9]);
}
std::array<u8, 32> PartitionDataManager::GetSDSaveKeySource(Package2Type type) const {
return FindKeyFromHex<0x20>(package2_fs.at(static_cast<size_t>(type)), source_hashes[10]);
}
std::array<u8, 32> PartitionDataManager::GetSDNCAKeySource(Package2Type type) const {
return FindKeyFromHex<0x20>(package2_fs.at(static_cast<size_t>(type)), source_hashes[11]);
}
std::array<u8, 16> PartitionDataManager::GetHeaderKekSource(Package2Type type) const {
return FindKeyFromHex(package2_fs.at(static_cast<size_t>(type)), source_hashes[12]);
}
std::array<u8, 32> PartitionDataManager::GetHeaderKeySource(Package2Type type) const {
return FindKeyFromHex<0x20>(package2_fs.at(static_cast<size_t>(type)), source_hashes[13]);
}
const std::vector<u8>& PartitionDataManager::GetPackage2SPLDecompressed(Package2Type type) const {
return package2_spl.at(static_cast<size_t>(type));
}
std::array<u8, 16> PartitionDataManager::GetAESKeyGenerationSource(Package2Type type) const {
return FindKeyFromHex(package2_spl.at(static_cast<size_t>(type)), source_hashes[4]);
}
bool PartitionDataManager::HasProdInfo() const {
return prodinfo != nullptr;
}
FileSys::VirtualFile PartitionDataManager::GetProdInfoRaw() const {
return prodinfo;
}
void PartitionDataManager::DecryptProdInfo(std::array<u8, 0x20> bis_key) {
if (prodinfo == nullptr)
return;
prodinfo_decrypted = std::make_shared<XTSEncryptionLayer>(prodinfo, bis_key);
}
std::array<u8, 576> PartitionDataManager::GetETicketExtendedKek() const {
std::array<u8, 0x240> out{};
if (prodinfo_decrypted != nullptr)
prodinfo_decrypted->Read(out.data(), out.size(), 0x3890);
return out;
}
} // namespace Core::Crypto