yuzu-emu
/
yuzu
Archived
1
0
Fork 0

audio_core: Apollo Part 1, AudioRenderer refactor

This commit is contained in:
David Marcec 2020-07-12 21:59:14 +10:00
parent c73701edea
commit 380658c21d
26 changed files with 4235 additions and 744 deletions

View File

@ -12,16 +12,32 @@ add_library(audio_core STATIC
buffer.h
codec.cpp
codec.h
command_generator.cpp
command_generator.h
common.h
effect_context.cpp
effect_context.h
info_updater.cpp
info_updater.h
memory_pool.cpp
memory_pool.h
mix_context.cpp
mix_context.h
null_sink.h
sink.h
sink_context.cpp
sink_context.h
sink_details.cpp
sink_details.h
sink_stream.h
splitter_context.cpp
splitter_context.h
stream.cpp
stream.h
time_stretch.cpp
time_stretch.h
voice_context.cpp
voice_context.h
$<$<BOOL:${ENABLE_CUBEB}>:cubeb_sink.cpp cubeb_sink.h>
)

View File

@ -197,4 +197,36 @@ std::vector<s16> Interpolate(InterpolationState& state, std::vector<s16> input,
return output;
}
void Resample(s32* output, const s32* input, s32 pitch, s32& fraction, std::size_t sample_count) {
const std::array<s16, 512>& lut = [pitch] {
if (pitch > 0xaaaa) {
return curve_lut0;
}
if (pitch <= 0x8000) {
return curve_lut1;
}
return curve_lut2;
}();
std::size_t index{};
for (std::size_t i = 0; i < sample_count; i++) {
const std::size_t lut_index{(static_cast<std::size_t>(fraction) >> 8) * 4};
const auto l0 = lut[lut_index + 0];
const auto l1 = lut[lut_index + 1];
const auto l2 = lut[lut_index + 2];
const auto l3 = lut[lut_index + 3];
const auto s0 = static_cast<s32>(input[index]);
const auto s1 = static_cast<s32>(input[index + 1]);
const auto s2 = static_cast<s32>(input[index + 2]);
const auto s3 = static_cast<s32>(input[index + 3]);
output[i] = (l0 * s0 + l1 * s1 + l2 * s2 + l3 * s3) >> 15;
fraction += pitch;
index += (fraction >> 15);
fraction &= 0x7fff;
}
}
} // namespace AudioCore

View File

@ -38,4 +38,7 @@ inline std::vector<s16> Interpolate(InterpolationState& state, std::vector<s16>
return Interpolate(state, std::move(input), ratio);
}
/// Nintendo Switchs DSP resampling algorithm. Based on a single channel
void Resample(s32* output, const s32* input, s32 pitch, s32& fraction, std::size_t sample_count);
} // namespace AudioCore

View File

@ -2,90 +2,42 @@
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <vector>
#include "audio_core/algorithm/interpolate.h"
#include "audio_core/audio_out.h"
#include "audio_core/audio_renderer.h"
#include "audio_core/codec.h"
#include "audio_core/common.h"
#include "audio_core/info_updater.h"
#include "audio_core/voice_context.h"
#include "common/assert.h"
#include "common/logging/log.h"
#include "core/core.h"
#include "core/hle/kernel/writable_event.h"
#include "core/memory.h"
#include "core/settings.h"
namespace AudioCore {
constexpr u32 STREAM_SAMPLE_RATE{48000};
constexpr u32 STREAM_NUM_CHANNELS{2};
using VoiceChannelHolder = std::array<VoiceResourceInformation*, 6>;
class AudioRenderer::VoiceState {
public:
bool IsPlaying() const {
return is_in_use && info.play_state == PlayState::Started;
}
const VoiceOutStatus& GetOutStatus() const {
return out_status;
}
const VoiceInfo& GetInfo() const {
return info;
}
VoiceInfo& GetInfo() {
return info;
}
void SetWaveIndex(std::size_t index);
std::vector<s16> DequeueSamples(std::size_t sample_count, Core::Memory::Memory& memory,
const VoiceChannelHolder& voice_resources);
void UpdateState();
void RefreshBuffer(Core::Memory::Memory& memory, const VoiceChannelHolder& voice_resources);
private:
bool is_in_use{};
bool is_refresh_pending{};
std::size_t wave_index{};
std::size_t offset{};
Codec::ADPCMState adpcm_state{};
InterpolationState interp_state{};
std::vector<s16> samples;
VoiceOutStatus out_status{};
VoiceInfo info{};
};
class AudioRenderer::EffectState {
public:
const EffectOutStatus& GetOutStatus() const {
return out_status;
}
const EffectInStatus& GetInfo() const {
return info;
}
EffectInStatus& GetInfo() {
return info;
}
void UpdateState(Core::Memory::Memory& memory);
private:
EffectOutStatus out_status{};
EffectInStatus info{};
};
AudioRenderer::AudioRenderer(Core::Timing::CoreTiming& core_timing, Core::Memory::Memory& memory_,
AudioRendererParameter params,
AudioCommon::AudioRendererParameter params,
std::shared_ptr<Kernel::WritableEvent> buffer_event,
std::size_t instance_number)
: worker_params{params}, buffer_event{buffer_event}, voices(params.voice_count),
voice_resources(params.voice_count), effects(params.effect_count), memory{memory_} {
: worker_params{params}, buffer_event{buffer_event},
memory_pool_info(params.effect_count + params.voice_count * 4),
voice_context(params.voice_count), effect_context(params.effect_count), mix_context(),
sink_context(params.sink_count), splitter_context(),
voices(params.voice_count), memory{memory_},
command_generator(worker_params, voice_context, mix_context, splitter_context, memory),
temp_mix_buffer(AudioCommon::TOTAL_TEMP_MIX_SIZE) {
behavior_info.SetUserRevision(params.revision);
splitter_context.Initialize(behavior_info, params.splitter_count,
params.num_splitter_send_channels);
mix_context.Initialize(behavior_info, params.submix_count + 1);
audio_out = std::make_unique<AudioCore::AudioOut>();
stream = audio_out->OpenStream(core_timing, STREAM_SAMPLE_RATE, STREAM_NUM_CHANNELS,
fmt::format("AudioRenderer-Instance{}", instance_number),
[=]() { buffer_event->Signal(); });
stream =
audio_out->OpenStream(core_timing, params.sample_rate, AudioCommon::STREAM_NUM_CHANNELS,
fmt::format("AudioRenderer-Instance{}", instance_number),
[=]() { buffer_event->Signal(); });
audio_out->StartStream(stream);
QueueMixedBuffer(0);
@ -111,355 +63,200 @@ Stream::State AudioRenderer::GetStreamState() const {
return stream->GetState();
}
ResultVal<std::vector<u8>> AudioRenderer::UpdateAudioRenderer(const std::vector<u8>& input_params) {
// Copy UpdateDataHeader struct
UpdateDataHeader config{};
std::memcpy(&config, input_params.data(), sizeof(UpdateDataHeader));
u32 memory_pool_count = worker_params.effect_count + (worker_params.voice_count * 4);
if (!behavior_info.UpdateInput(input_params, sizeof(UpdateDataHeader))) {
LOG_ERROR(Audio, "Failed to update behavior info input parameters");
return Audren::ERR_INVALID_PARAMETERS;
}
// Copy MemoryPoolInfo structs
std::vector<MemoryPoolInfo> mem_pool_info(memory_pool_count);
std::memcpy(mem_pool_info.data(),
input_params.data() + sizeof(UpdateDataHeader) + config.behavior_size,
memory_pool_count * sizeof(MemoryPoolInfo));
// Copy voice resources
const std::size_t voice_resource_offset{sizeof(UpdateDataHeader) + config.behavior_size +
config.memory_pools_size};
std::memcpy(voice_resources.data(), input_params.data() + voice_resource_offset,
sizeof(VoiceResourceInformation) * voice_resources.size());
// Copy VoiceInfo structs
std::size_t voice_offset{sizeof(UpdateDataHeader) + config.behavior_size +
config.memory_pools_size + config.voice_resource_size};
for (auto& voice : voices) {
std::memcpy(&voice.GetInfo(), input_params.data() + voice_offset, sizeof(VoiceInfo));
voice_offset += sizeof(VoiceInfo);
}
std::size_t effect_offset{sizeof(UpdateDataHeader) + config.behavior_size +
config.memory_pools_size + config.voice_resource_size +
config.voices_size};
for (auto& effect : effects) {
std::memcpy(&effect.GetInfo(), input_params.data() + effect_offset, sizeof(EffectInStatus));
effect_offset += sizeof(EffectInStatus);
}
// Update memory pool state
std::vector<MemoryPoolEntry> memory_pool(memory_pool_count);
for (std::size_t index = 0; index < memory_pool.size(); ++index) {
if (mem_pool_info[index].pool_state == MemoryPoolStates::RequestAttach) {
memory_pool[index].state = MemoryPoolStates::Attached;
} else if (mem_pool_info[index].pool_state == MemoryPoolStates::RequestDetach) {
memory_pool[index].state = MemoryPoolStates::Detached;
}
}
// Update voices
for (auto& voice : voices) {
voice.UpdateState();
if (!voice.GetInfo().is_in_use) {
continue;
}
if (voice.GetInfo().is_new) {
voice.SetWaveIndex(voice.GetInfo().wave_buffer_head);
}
}
for (auto& effect : effects) {
effect.UpdateState(memory);
}
// Release previous buffers and queue next ones for playback
ReleaseAndQueueBuffers();
// Copy output header
UpdateDataHeader response_data{worker_params};
if (behavior_info.IsElapsedFrameCountSupported()) {
response_data.render_info = sizeof(RendererInfo);
response_data.total_size += sizeof(RendererInfo);
}
std::vector<u8> output_params(response_data.total_size);
std::memcpy(output_params.data(), &response_data, sizeof(UpdateDataHeader));
// Copy output memory pool entries
std::memcpy(output_params.data() + sizeof(UpdateDataHeader), memory_pool.data(),
response_data.memory_pools_size);
// Copy output voice status
std::size_t voice_out_status_offset{sizeof(UpdateDataHeader) + response_data.memory_pools_size};
for (const auto& voice : voices) {
std::memcpy(output_params.data() + voice_out_status_offset, &voice.GetOutStatus(),
sizeof(VoiceOutStatus));
voice_out_status_offset += sizeof(VoiceOutStatus);
}
std::size_t effect_out_status_offset{
sizeof(UpdateDataHeader) + response_data.memory_pools_size + response_data.voices_size +
response_data.voice_resource_size};
for (const auto& effect : effects) {
std::memcpy(output_params.data() + effect_out_status_offset, &effect.GetOutStatus(),
sizeof(EffectOutStatus));
effect_out_status_offset += sizeof(EffectOutStatus);
}
// Update behavior info output
const std::size_t behavior_out_status_offset{
sizeof(UpdateDataHeader) + response_data.memory_pools_size + response_data.voices_size +
response_data.effects_size + response_data.sinks_size +
response_data.performance_manager_size};
if (!behavior_info.UpdateOutput(output_params, behavior_out_status_offset)) {
LOG_ERROR(Audio, "Failed to update behavior info output parameters");
return Audren::ERR_INVALID_PARAMETERS;
}
if (behavior_info.IsElapsedFrameCountSupported()) {
const std::size_t renderer_info_offset{
sizeof(UpdateDataHeader) + response_data.memory_pools_size + response_data.voices_size +
response_data.effects_size + response_data.sinks_size +
response_data.performance_manager_size + response_data.behavior_size};
RendererInfo renderer_info{};
renderer_info.elasped_frame_count = elapsed_frame_count;
std::memcpy(output_params.data() + renderer_info_offset, &renderer_info,
sizeof(RendererInfo));
}
return MakeResult(output_params);
}
void AudioRenderer::VoiceState::SetWaveIndex(std::size_t index) {
wave_index = index & 3;
is_refresh_pending = true;
}
std::vector<s16> AudioRenderer::VoiceState::DequeueSamples(
std::size_t sample_count, Core::Memory::Memory& memory,
const VoiceChannelHolder& voice_resources) {
if (!IsPlaying()) {
return {};
}
if (is_refresh_pending) {
RefreshBuffer(memory, voice_resources);
}
const std::size_t max_size{samples.size() - offset};
const std::size_t dequeue_offset{offset};
std::size_t size{sample_count * STREAM_NUM_CHANNELS};
if (size > max_size) {
size = max_size;
}
out_status.played_sample_count += size / STREAM_NUM_CHANNELS;
offset += size;
const auto& wave_buffer{info.wave_buffer[wave_index]};
if (offset == samples.size()) {
offset = 0;
if (!wave_buffer.is_looping && wave_buffer.buffer_sz) {
SetWaveIndex(wave_index + 1);
}
if (wave_buffer.buffer_sz) {
out_status.wave_buffer_consumed++;
}
if (wave_buffer.end_of_stream || wave_buffer.buffer_sz == 0) {
info.play_state = PlayState::Paused;
}
}
return {samples.begin() + dequeue_offset, samples.begin() + dequeue_offset + size};
}
void AudioRenderer::VoiceState::UpdateState() {
if (is_in_use && !info.is_in_use) {
// No longer in use, reset state
is_refresh_pending = true;
wave_index = 0;
offset = 0;
out_status = {};
}
is_in_use = info.is_in_use;
}
void AudioRenderer::VoiceState::RefreshBuffer(Core::Memory::Memory& memory,
const VoiceChannelHolder& voice_resources) {
const auto wave_buffer_address = info.wave_buffer[wave_index].buffer_addr;
const auto wave_buffer_size = info.wave_buffer[wave_index].buffer_sz;
std::vector<s16> new_samples(wave_buffer_size / sizeof(s16));
memory.ReadBlock(wave_buffer_address, new_samples.data(), wave_buffer_size);
switch (static_cast<Codec::PcmFormat>(info.sample_format)) {
case Codec::PcmFormat::Int16: {
// PCM16 is played as-is
break;
}
case Codec::PcmFormat::Adpcm: {
// Decode ADPCM to PCM16
Codec::ADPCM_Coeff coeffs;
memory.ReadBlock(info.additional_params_addr, coeffs.data(), sizeof(Codec::ADPCM_Coeff));
new_samples = Codec::DecodeADPCM(reinterpret_cast<u8*>(new_samples.data()),
new_samples.size() * sizeof(s16), coeffs, adpcm_state);
break;
}
default:
UNIMPLEMENTED_MSG("Unimplemented sample_format={}", info.sample_format);
break;
}
switch (info.channel_count) {
case 1: {
// 1 channel is upsampled to 2 channel
samples.resize(new_samples.size() * 2);
for (std::size_t index = 0; index < new_samples.size(); ++index) {
auto sample = static_cast<float>(new_samples[index]);
if (voice_resources[0]->in_use) {
sample *= voice_resources[0]->mix_volumes[0];
}
samples[index * 2] = static_cast<s16>(sample * info.volume);
samples[index * 2 + 1] = static_cast<s16>(sample * info.volume);
}
break;
}
case 2: {
// 2 channel is played as is
samples = std::move(new_samples);
const std::size_t sample_count = (samples.size() / 2);
for (std::size_t index = 0; index < sample_count; ++index) {
const std::size_t index_l = index * 2;
const std::size_t index_r = index * 2 + 1;
auto sample_l = static_cast<float>(samples[index_l]);
auto sample_r = static_cast<float>(samples[index_r]);
if (voice_resources[0]->in_use) {
sample_l *= voice_resources[0]->mix_volumes[0];
}
if (voice_resources[1]->in_use) {
sample_r *= voice_resources[1]->mix_volumes[1];
}
samples[index_l] = static_cast<s16>(sample_l * info.volume);
samples[index_r] = static_cast<s16>(sample_r * info.volume);
}
break;
}
case 6: {
samples.resize((new_samples.size() / 6) * 2);
const std::size_t sample_count = samples.size() / 2;
for (std::size_t index = 0; index < sample_count; ++index) {
auto FL = static_cast<float>(new_samples[index * 6]);
auto FR = static_cast<float>(new_samples[index * 6 + 1]);
auto FC = static_cast<float>(new_samples[index * 6 + 2]);
auto BL = static_cast<float>(new_samples[index * 6 + 4]);
auto BR = static_cast<float>(new_samples[index * 6 + 5]);
if (voice_resources[0]->in_use) {
FL *= voice_resources[0]->mix_volumes[0];
}
if (voice_resources[1]->in_use) {
FR *= voice_resources[1]->mix_volumes[1];
}
if (voice_resources[2]->in_use) {
FC *= voice_resources[2]->mix_volumes[2];
}
if (voice_resources[4]->in_use) {
BL *= voice_resources[4]->mix_volumes[4];
}
if (voice_resources[5]->in_use) {
BR *= voice_resources[5]->mix_volumes[5];
}
samples[index * 2] =
static_cast<s16>((0.3694f * FL + 0.2612f * FC + 0.3694f * BL) * info.volume);
samples[index * 2 + 1] =
static_cast<s16>((0.3694f * FR + 0.2612f * FC + 0.3694f * BR) * info.volume);
}
break;
}
default:
UNIMPLEMENTED_MSG("Unimplemented channel_count={}", info.channel_count);
break;
}
// Only interpolate when necessary, expensive.
if (GetInfo().sample_rate != STREAM_SAMPLE_RATE) {
samples = Interpolate(interp_state, std::move(samples), GetInfo().sample_rate,
STREAM_SAMPLE_RATE);
}
is_refresh_pending = false;
}
void AudioRenderer::EffectState::UpdateState(Core::Memory::Memory& memory) {
if (info.is_new) {
out_status.state = EffectStatus::New;
} else {
if (info.type == Effect::Aux) {
ASSERT_MSG(memory.Read32(info.aux_info.return_buffer_info) == 0,
"Aux buffers tried to update");
ASSERT_MSG(memory.Read32(info.aux_info.send_buffer_info) == 0,
"Aux buffers tried to update");
ASSERT_MSG(memory.Read32(info.aux_info.return_buffer_base) == 0,
"Aux buffers tried to update");
ASSERT_MSG(memory.Read32(info.aux_info.send_buffer_base) == 0,
"Aux buffers tried to update");
}
}
}
static constexpr s16 ClampToS16(s32 value) {
return static_cast<s16>(std::clamp(value, -32768, 32767));
}
ResultCode AudioRenderer::UpdateAudioRenderer(const std::vector<u8>& input_params,
std::vector<u8>& output_params) {
InfoUpdater info_updater{input_params, output_params, behavior_info};
if (!info_updater.UpdateBehaviorInfo(behavior_info)) {
LOG_ERROR(Audio, "Failed to update behavior info input parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
if (!info_updater.UpdateMemoryPools(memory_pool_info)) {
LOG_ERROR(Audio, "Failed to update memory pool parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
if (!info_updater.UpdateVoiceChannelResources(voice_context)) {
LOG_ERROR(Audio, "Failed to update voice channel resource parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
if (!info_updater.UpdateVoices(voice_context, memory_pool_info, 0)) {
LOG_ERROR(Audio, "Failed to update voice parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
// TODO(ogniK): Deal with stopped audio renderer but updates still taking place
if (!info_updater.UpdateEffects(effect_context, true)) {
LOG_ERROR(Audio, "Failed to update effect parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
if (behavior_info.IsSplitterSupported()) {
if (!info_updater.UpdateSplitterInfo(splitter_context)) {
LOG_ERROR(Audio, "Failed to update splitter parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
}
auto mix_result =
info_updater.UpdateMixes(mix_context, worker_params.mix_buffer_count, splitter_context);
if (mix_result.IsError()) {
LOG_ERROR(Audio, "Failed to update mix parameters");
return mix_result;
}
// TODO(ogniK): Sinks
if (!info_updater.UpdateSinks(sink_context)) {
LOG_ERROR(Audio, "Failed to update sink parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
// TODO(ogniK): Performance buffer
if (!info_updater.UpdatePerformanceBuffer()) {
LOG_ERROR(Audio, "Failed to update performance buffer parameters");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
if (!info_updater.UpdateErrorInfo(behavior_info)) {
LOG_ERROR(Audio, "Failed to update error info");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
if (behavior_info.IsElapsedFrameCountSupported()) {
if (!info_updater.UpdateRendererInfo(elapsed_frame_count)) {
LOG_ERROR(Audio, "Failed to update renderer info");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
}
// TODO(ogniK): Statistics
if (!info_updater.WriteOutputHeader()) {
LOG_ERROR(Audio, "Failed to write output header");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
// TODO(ogniK): Check when all sections are implemented
if (!info_updater.CheckConsumedSize()) {
LOG_ERROR(Audio, "Audio buffers were not consumed!");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
ReleaseAndQueueBuffers();
return RESULT_SUCCESS;
}
void AudioRenderer::QueueMixedBuffer(Buffer::Tag tag) {
constexpr std::size_t BUFFER_SIZE{512};
command_generator.PreCommand();
// Clear mix buffers before our next operation
command_generator.ClearMixBuffers();
// If the splitter is not in use, sort our mixes
if (!splitter_context.UsingSplitter()) {
mix_context.SortInfo();
}
// Sort our voices
voice_context.SortInfo();
// Handle samples
command_generator.GenerateVoiceCommands();
command_generator.GenerateSubMixCommands();
command_generator.GenerateFinalMixCommands();
command_generator.PostCommand();
// Base sample size
std::size_t BUFFER_SIZE{worker_params.sample_count};
// Samples
std::vector<s16> buffer(BUFFER_SIZE * stream->GetNumChannels());
// Make sure to clear our samples
std::memset(buffer.data(), 0, buffer.size() * sizeof(s16));
for (auto& voice : voices) {
if (!voice.IsPlaying()) {
continue;
}
VoiceChannelHolder resources{};
for (u32 channel = 0; channel < voice.GetInfo().channel_count; channel++) {
const auto channel_resource_id = voice.GetInfo().voice_channel_resource_ids[channel];
resources[channel] = &voice_resources[channel_resource_id];
if (sink_context.InUse()) {
const auto stream_channel_count = stream->GetNumChannels();
const auto buffer_offsets = sink_context.OutputBuffers();
const auto channel_count = buffer_offsets.size();
const auto& final_mix = mix_context.GetFinalMixInfo();
const auto& in_params = final_mix.GetInParams();
std::vector<s32*> mix_buffers(channel_count);
for (std::size_t i = 0; i < channel_count; i++) {
mix_buffers[i] =
command_generator.GetMixBuffer(in_params.buffer_offset + buffer_offsets[i]);
}
std::size_t offset{};
s64 samples_remaining{BUFFER_SIZE};
while (samples_remaining > 0) {
const std::vector<s16> samples{
voice.DequeueSamples(samples_remaining, memory, resources)};
for (std::size_t i = 0; i < BUFFER_SIZE; i++) {
if (channel_count == 1) {
const auto sample = ClampToS16(mix_buffers[0][i]);
buffer[i * stream_channel_count + 0] = sample;
if (stream_channel_count > 1) {
buffer[i * stream_channel_count + 1] = sample;
}
if (stream_channel_count == 6) {
buffer[i * stream_channel_count + 2] = sample;
buffer[i * stream_channel_count + 4] = sample;
buffer[i * stream_channel_count + 5] = sample;
}
} else if (channel_count == 2) {
const auto l_sample = ClampToS16(mix_buffers[0][i]);
const auto r_sample = ClampToS16(mix_buffers[1][i]);
if (stream_channel_count == 0) {
buffer[i * stream_channel_count + 0] = l_sample;
} else if (stream_channel_count == 2) {
buffer[i * stream_channel_count + 0] = l_sample;
buffer[i * stream_channel_count + 1] = r_sample;
} else if (stream_channel_count == 6) {
buffer[i * stream_channel_count + 0] = l_sample;
buffer[i * stream_channel_count + 1] = r_sample;
if (samples.empty()) {
break;
}
buffer[i * stream_channel_count + 2] =
ClampToS16((static_cast<s32>(l_sample) + static_cast<s32>(r_sample)) / 2);
samples_remaining -= samples.size() / stream->GetNumChannels();
buffer[i * stream_channel_count + 4] = l_sample;
buffer[i * stream_channel_count + 5] = r_sample;
}
for (const auto& sample : samples) {
const s32 buffer_sample{buffer[offset]};
buffer[offset++] =
ClampToS16(buffer_sample + static_cast<s32>(sample * voice.GetInfo().volume));
} else if (channel_count == 6) {
const auto fl_sample = ClampToS16(mix_buffers[0][i]);
const auto fr_sample = ClampToS16(mix_buffers[1][i]);
const auto fc_sample = ClampToS16(mix_buffers[2][i]);
const auto lf_sample = ClampToS16(mix_buffers[3][i]);
const auto bl_sample = ClampToS16(mix_buffers[4][i]);
const auto br_sample = ClampToS16(mix_buffers[5][i]);
if (stream_channel_count == 1) {
buffer[i * stream_channel_count + 0] = fc_sample;
} else if (stream_channel_count == 2) {
buffer[i * stream_channel_count + 0] =
static_cast<s16>(0.3694f * static_cast<float>(fl_sample) +
0.2612f * static_cast<float>(fc_sample) +
0.3694f * static_cast<float>(bl_sample));
buffer[i * stream_channel_count + 1] =
static_cast<s16>(0.3694f * static_cast<float>(fr_sample) +
0.2612f * static_cast<float>(fc_sample) +
0.3694f * static_cast<float>(br_sample));
} else if (stream_channel_count == 6) {
buffer[i * stream_channel_count + 0] = fl_sample;
buffer[i * stream_channel_count + 1] = fr_sample;
buffer[i * stream_channel_count + 2] = fc_sample;
buffer[i * stream_channel_count + 3] = lf_sample;
buffer[i * stream_channel_count + 4] = bl_sample;
buffer[i * stream_channel_count + 5] = br_sample;
}
}
}
}
audio_out->QueueBuffer(stream, tag, std::move(buffer));
elapsed_frame_count++;
voice_context.UpdateStateByDspShared();
}
void AudioRenderer::ReleaseAndQueueBuffers() {

View File

@ -9,8 +9,15 @@
#include <vector>
#include "audio_core/behavior_info.h"
#include "audio_core/command_generator.h"
#include "audio_core/common.h"
#include "audio_core/effect_context.h"
#include "audio_core/memory_pool.h"
#include "audio_core/mix_context.h"
#include "audio_core/sink_context.h"
#include "audio_core/splitter_context.h"
#include "audio_core/stream.h"
#include "audio_core/voice_context.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/swap.h"
@ -30,220 +37,25 @@ class Memory;
}
namespace AudioCore {
using DSPStateHolder = std::array<VoiceState*, 6>;
class AudioOut;
enum class PlayState : u8 {
Started = 0,
Stopped = 1,
Paused = 2,
};
enum class Effect : u8 {
None = 0,
Aux = 2,
};
enum class EffectStatus : u8 {
None = 0,
New = 1,
};
struct AudioRendererParameter {
u32_le sample_rate;
u32_le sample_count;
u32_le mix_buffer_count;
u32_le submix_count;
u32_le voice_count;
u32_le sink_count;
u32_le effect_count;
u32_le performance_frame_count;
u8 is_voice_drop_enabled;
u8 unknown_21;
u8 unknown_22;
u8 execution_mode;
u32_le splitter_count;
u32_le num_splitter_send_channels;
u32_le unknown_30;
u32_le revision;
};
static_assert(sizeof(AudioRendererParameter) == 52, "AudioRendererParameter is an invalid size");
enum class MemoryPoolStates : u32 { // Should be LE
Invalid = 0x0,
Unknown = 0x1,
RequestDetach = 0x2,
Detached = 0x3,
RequestAttach = 0x4,
Attached = 0x5,
Released = 0x6,
};
struct MemoryPoolEntry {
MemoryPoolStates state;
u32_le unknown_4;
u32_le unknown_8;
u32_le unknown_c;
};
static_assert(sizeof(MemoryPoolEntry) == 0x10, "MemoryPoolEntry has wrong size");
struct MemoryPoolInfo {
u64_le pool_address;
u64_le pool_size;
MemoryPoolStates pool_state;
INSERT_PADDING_WORDS(3); // Unknown
};
static_assert(sizeof(MemoryPoolInfo) == 0x20, "MemoryPoolInfo has wrong size");
struct BiquadFilter {
u8 enable;
INSERT_PADDING_BYTES(1);
std::array<s16_le, 3> numerator;
std::array<s16_le, 2> denominator;
};
static_assert(sizeof(BiquadFilter) == 0xc, "BiquadFilter has wrong size");
struct WaveBuffer {
u64_le buffer_addr;
u64_le buffer_sz;
s32_le start_sample_offset;
s32_le end_sample_offset;
u8 is_looping;
u8 end_of_stream;
u8 sent_to_server;
INSERT_PADDING_BYTES(5);
u64 context_addr;
u64 context_sz;
INSERT_PADDING_BYTES(8);
};
static_assert(sizeof(WaveBuffer) == 0x38, "WaveBuffer has wrong size");
struct VoiceResourceInformation {
s32_le id{};
std::array<float_le, MAX_MIX_BUFFERS> mix_volumes{};
bool in_use{};
INSERT_PADDING_BYTES(11);
};
static_assert(sizeof(VoiceResourceInformation) == 0x70, "VoiceResourceInformation has wrong size");
struct VoiceInfo {
u32_le id;
u32_le node_id;
u8 is_new;
u8 is_in_use;
PlayState play_state;
u8 sample_format;
u32_le sample_rate;
u32_le priority;
u32_le sorting_order;
u32_le channel_count;
float_le pitch;
float_le volume;
std::array<BiquadFilter, 2> biquad_filter;
u32_le wave_buffer_count;
u32_le wave_buffer_head;
INSERT_PADDING_WORDS(1);
u64_le additional_params_addr;
u64_le additional_params_sz;
u32_le mix_id;
u32_le splitter_info_id;
std::array<WaveBuffer, 4> wave_buffer;
std::array<u32_le, 6> voice_channel_resource_ids;
INSERT_PADDING_BYTES(24);
};
static_assert(sizeof(VoiceInfo) == 0x170, "VoiceInfo is wrong size");
struct VoiceOutStatus {
u64_le played_sample_count;
u32_le wave_buffer_consumed;
u32_le voice_drops_count;
};
static_assert(sizeof(VoiceOutStatus) == 0x10, "VoiceOutStatus has wrong size");
struct AuxInfo {
std::array<u8, 24> input_mix_buffers;
std::array<u8, 24> output_mix_buffers;
u32_le mix_buffer_count;
u32_le sample_rate; // Stored in the aux buffer currently
u32_le sample_count;
u64_le send_buffer_info;
u64_le send_buffer_base;
u64_le return_buffer_info;
u64_le return_buffer_base;
};
static_assert(sizeof(AuxInfo) == 0x60, "AuxInfo is an invalid size");
struct EffectInStatus {
Effect type;
u8 is_new;
u8 is_enabled;
INSERT_PADDING_BYTES(1);
u32_le mix_id;
u64_le buffer_base;
u64_le buffer_sz;
s32_le priority;
INSERT_PADDING_BYTES(4);
union {
std::array<u8, 0xa0> raw;
AuxInfo aux_info;
};
};
static_assert(sizeof(EffectInStatus) == 0xc0, "EffectInStatus is an invalid size");
struct EffectOutStatus {
EffectStatus state;
INSERT_PADDING_BYTES(0xf);
};
static_assert(sizeof(EffectOutStatus) == 0x10, "EffectOutStatus is an invalid size");
struct RendererInfo {
u64_le elasped_frame_count{};
INSERT_PADDING_WORDS(2);
};
static_assert(sizeof(RendererInfo) == 0x10, "RendererInfo is an invalid size");
struct UpdateDataHeader {
UpdateDataHeader() {}
explicit UpdateDataHeader(const AudioRendererParameter& config) {
revision = Common::MakeMagic('R', 'E', 'V', '8'); // 9.2.0 Revision
behavior_size = 0xb0;
memory_pools_size = (config.effect_count + (config.voice_count * 4)) * 0x10;
voices_size = config.voice_count * 0x10;
voice_resource_size = 0x0;
effects_size = config.effect_count * 0x10;
mixes_size = 0x0;
sinks_size = config.sink_count * 0x20;
performance_manager_size = 0x10;
render_info = 0;
total_size = sizeof(UpdateDataHeader) + behavior_size + memory_pools_size + voices_size +
effects_size + sinks_size + performance_manager_size;
}
u32_le revision{};
u32_le behavior_size{};
u32_le memory_pools_size{};
u32_le voices_size{};
u32_le voice_resource_size{};
u32_le effects_size{};
u32_le mixes_size{};
u32_le sinks_size{};
u32_le performance_manager_size{};
u32_le splitter_size{};
u32_le render_info{};
INSERT_PADDING_WORDS(4);
u32_le total_size{};
};
static_assert(sizeof(UpdateDataHeader) == 0x40, "UpdateDataHeader has wrong size");
class AudioRenderer {
public:
AudioRenderer(Core::Timing::CoreTiming& core_timing, Core::Memory::Memory& memory_,
AudioRendererParameter params,
AudioCommon::AudioRendererParameter params,
std::shared_ptr<Kernel::WritableEvent> buffer_event, std::size_t instance_number);
~AudioRenderer();
ResultVal<std::vector<u8>> UpdateAudioRenderer(const std::vector<u8>& input_params);
ResultCode UpdateAudioRenderer(const std::vector<u8>& input_params,
std::vector<u8>& output_params);
void QueueMixedBuffer(Buffer::Tag tag);
void ReleaseAndQueueBuffers();
u32 GetSampleRate() const;
@ -252,19 +64,23 @@ public:
Stream::State GetStreamState() const;
private:
class EffectState;
class VoiceState;
BehaviorInfo behavior_info{};
AudioRendererParameter worker_params;
AudioCommon::AudioRendererParameter worker_params;
std::shared_ptr<Kernel::WritableEvent> buffer_event;
std::vector<ServerMemoryPoolInfo> memory_pool_info;
VoiceContext voice_context;
EffectContext effect_context;
MixContext mix_context;
SinkContext sink_context;
SplitterContext splitter_context;
std::vector<VoiceState> voices;
std::vector<VoiceResourceInformation> voice_resources;
std::vector<EffectState> effects;
std::unique_ptr<AudioOut> audio_out;
StreamPtr stream;
Core::Memory::Memory& memory;
CommandGenerator command_generator;
std::size_t elapsed_frame_count{};
std::vector<s32> temp_mix_buffer{};
};
} // namespace AudioCore

View File

@ -9,39 +9,11 @@
namespace AudioCore {
BehaviorInfo::BehaviorInfo() : process_revision(CURRENT_PROCESS_REVISION) {}
BehaviorInfo::BehaviorInfo() : process_revision(AudioCommon::CURRENT_PROCESS_REVISION) {}
BehaviorInfo::~BehaviorInfo() = default;
bool BehaviorInfo::UpdateInput(const std::vector<u8>& buffer, std::size_t offset) {
if (!CanConsumeBuffer(buffer.size(), offset, sizeof(InParams))) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
InParams params{};
std::memcpy(&params, buffer.data() + offset, sizeof(InParams));
if (!IsValidRevision(params.revision)) {
LOG_ERROR(Audio, "Invalid input revision, revision=0x{:08X}", params.revision);
return false;
}
if (user_revision != params.revision) {
LOG_ERROR(Audio,
"User revision differs from input revision, expecting 0x{:08X} but got 0x{:08X}",
user_revision, params.revision);
return false;
}
ClearError();
UpdateFlags(params.flags);
// TODO(ogniK): Check input params size when InfoUpdater is used
return true;
}
bool BehaviorInfo::UpdateOutput(std::vector<u8>& buffer, std::size_t offset) {
if (!CanConsumeBuffer(buffer.size(), offset, sizeof(OutParams))) {
if (!AudioCommon::CanConsumeBuffer(buffer.size(), offset, sizeof(OutParams))) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
@ -65,36 +37,69 @@ void BehaviorInfo::SetUserRevision(u32_le revision) {
user_revision = revision;
}
u32_le BehaviorInfo::GetUserRevision() const {
return user_revision;
}
u32_le BehaviorInfo::GetProcessRevision() const {
return process_revision;
}
bool BehaviorInfo::IsAdpcmLoopContextBugFixed() const {
return IsRevisionSupported(2, user_revision);
return AudioCommon::IsRevisionSupported(2, user_revision);
}
bool BehaviorInfo::IsSplitterSupported() const {
return IsRevisionSupported(2, user_revision);
return AudioCommon::IsRevisionSupported(2, user_revision);
}
bool BehaviorInfo::IsLongSizePreDelaySupported() const {
return IsRevisionSupported(3, user_revision);
return AudioCommon::IsRevisionSupported(3, user_revision);
}
bool BehaviorInfo::IsAudioRenererProcessingTimeLimit80PercentSupported() const {
return IsRevisionSupported(5, user_revision);
return AudioCommon::IsRevisionSupported(5, user_revision);
}
bool BehaviorInfo::IsAudioRenererProcessingTimeLimit75PercentSupported() const {
return IsRevisionSupported(4, user_revision);
return AudioCommon::IsRevisionSupported(4, user_revision);
}
bool BehaviorInfo::IsAudioRenererProcessingTimeLimit70PercentSupported() const {
return IsRevisionSupported(1, user_revision);
return AudioCommon::IsRevisionSupported(1, user_revision);
}
bool BehaviorInfo::IsElapsedFrameCountSupported() const {
return IsRevisionSupported(5, user_revision);
return AudioCommon::IsRevisionSupported(5, user_revision);
}
bool BehaviorInfo::IsMemoryPoolForceMappingEnabled() const {
return (flags & 1) != 0;
}
bool BehaviorInfo::IsFlushVoiceWaveBuffersSupported() const {
return AudioCommon::IsRevisionSupported(5, user_revision);
}
bool BehaviorInfo::IsVoicePlayedSampleCountResetAtLoopPointSupported() const {
return AudioCommon::IsRevisionSupported(5, user_revision);
}
bool BehaviorInfo::IsVoicePitchAndSrcSkippedSupported() const {
return AudioCommon::IsRevisionSupported(5, user_revision);
}
bool BehaviorInfo::IsMixInParameterDirtyOnlyUpdateSupported() const {
return AudioCommon::IsRevisionSupported(7, user_revision);
}
bool BehaviorInfo::IsSplitterBugFixed() const {
return AudioCommon::IsRevisionSupported(5, user_revision);
}
void BehaviorInfo::CopyErrorInfo(BehaviorInfo::OutParams& dst) {
dst.error_count = static_cast<u32>(error_count);
std::memcpy(dst.errors.data(), errors.data(), sizeof(ErrorInfo) * dst.errors.size());
}
} // namespace AudioCore

View File

@ -14,30 +14,6 @@
namespace AudioCore {
class BehaviorInfo {
public:
explicit BehaviorInfo();
~BehaviorInfo();
bool UpdateInput(const std::vector<u8>& buffer, std::size_t offset);
bool UpdateOutput(std::vector<u8>& buffer, std::size_t offset);
void ClearError();
void UpdateFlags(u64_le dest_flags);
void SetUserRevision(u32_le revision);
bool IsAdpcmLoopContextBugFixed() const;
bool IsSplitterSupported() const;
bool IsLongSizePreDelaySupported() const;
bool IsAudioRenererProcessingTimeLimit80PercentSupported() const;
bool IsAudioRenererProcessingTimeLimit75PercentSupported() const;
bool IsAudioRenererProcessingTimeLimit70PercentSupported() const;
bool IsElapsedFrameCountSupported() const;
bool IsMemoryPoolForceMappingEnabled() const;
private:
u32_le process_revision{};
u32_le user_revision{};
u64_le flags{};
struct ErrorInfo {
u32_le result{};
INSERT_PADDING_WORDS(1);
@ -45,9 +21,6 @@ private:
};
static_assert(sizeof(ErrorInfo) == 0x10, "ErrorInfo is an invalid size");
std::array<ErrorInfo, 10> errors{};
std::size_t error_count{};
struct InParams {
u32_le revision{};
u32_le padding{};
@ -61,6 +34,39 @@ private:
INSERT_PADDING_BYTES(12);
};
static_assert(sizeof(OutParams) == 0xb0, "OutParams is an invalid size");
explicit BehaviorInfo();
~BehaviorInfo();
bool UpdateOutput(std::vector<u8>& buffer, std::size_t offset);
void ClearError();
void UpdateFlags(u64_le dest_flags);
void SetUserRevision(u32_le revision);
u32_le GetUserRevision() const;
u32_le GetProcessRevision() const;
bool IsAdpcmLoopContextBugFixed() const;
bool IsSplitterSupported() const;
bool IsLongSizePreDelaySupported() const;
bool IsAudioRenererProcessingTimeLimit80PercentSupported() const;
bool IsAudioRenererProcessingTimeLimit75PercentSupported() const;
bool IsAudioRenererProcessingTimeLimit70PercentSupported() const;
bool IsElapsedFrameCountSupported() const;
bool IsMemoryPoolForceMappingEnabled() const;
bool IsFlushVoiceWaveBuffersSupported() const;
bool IsVoicePlayedSampleCountResetAtLoopPointSupported() const;
bool IsVoicePitchAndSrcSkippedSupported() const;
bool IsMixInParameterDirtyOnlyUpdateSupported() const;
bool IsSplitterBugFixed() const;
void CopyErrorInfo(OutParams& dst);
private:
u32_le process_revision{};
u32_le user_revision{};
u64_le flags{};
std::array<ErrorInfo, 10> errors{};
std::size_t error_count{};
};
} // namespace AudioCore

View File

@ -0,0 +1,668 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "audio_core/algorithm/interpolate.h"
#include "audio_core/command_generator.h"
#include "audio_core/mix_context.h"
#include "audio_core/voice_context.h"
#include "core/memory.h"
namespace AudioCore {
namespace {
static constexpr std::size_t MIX_BUFFER_SIZE = 0x3f00;
static constexpr std::size_t SCALED_MIX_BUFFER_SIZE = MIX_BUFFER_SIZE << 15ULL;
template <std::size_t N>
void ApplyMix(s32* output, const s32* input, s32 gain, s32 sample_count) {
for (s32 i = 0; i < sample_count; i += N) {
for (std::size_t j = 0; j < N; j++) {
output[i + j] +=
static_cast<s32>((static_cast<s64>(input[i + j]) * gain + 0x4000) >> 15);
}
}
}
s32 ApplyMixRamp(s32* output, const s32* input, float gain, float delta, s32 sample_count) {
s32 x = 0;
for (s32 i = 0; i < sample_count; i++) {
x = static_cast<s32>(static_cast<float>(input[i]) * gain);
output[i] += x;
gain += delta;
}
return x;
}
void ApplyGain(s32* output, const s32* input, s32 gain, s32 delta, s32 sample_count) {
for (s32 i = 0; i < sample_count; i++) {
output[i] = static_cast<s32>((static_cast<s64>(input[i]) * gain + 0x4000) >> 15);
gain += delta;
}
}
void ApplyGainWithoutDelta(s32* output, const s32* input, s32 gain, s32 sample_count) {
for (s32 i = 0; i < sample_count; i++) {
output[i] = static_cast<s32>((static_cast<s64>(input[i]) * gain + 0x4000) >> 15);
}
}
} // namespace
CommandGenerator::CommandGenerator(AudioCommon::AudioRendererParameter& worker_params,
VoiceContext& voice_context, MixContext& mix_context,
SplitterContext& splitter_context, Core::Memory::Memory& memory)
: worker_params(worker_params), voice_context(voice_context), mix_context(mix_context),
splitter_context(splitter_context), memory(memory),
mix_buffer((worker_params.mix_buffer_count + AudioCommon::MAX_CHANNEL_COUNT) *
worker_params.sample_count),
sample_buffer(MIX_BUFFER_SIZE) {}
CommandGenerator::~CommandGenerator() = default;
void CommandGenerator::ClearMixBuffers() {
std::memset(mix_buffer.data(), 0, mix_buffer.size() * sizeof(s32));
std::memset(sample_buffer.data(), 0, sample_buffer.size() * sizeof(s32));
}
void CommandGenerator::GenerateVoiceCommands() {
if (dumping_frame) {
LOG_CRITICAL(Audio, "(DSP_TRACE) GenerateVoiceCommands");
}
// Grab all our voices
const auto voice_count = voice_context.GetVoiceCount();
for (std::size_t i = 0; i < voice_count; i++) {
auto& voice_info = voice_context.GetSortedInfo(i);
// Update voices and check if we should queue them
if (voice_info.ShouldSkip() || !voice_info.UpdateForCommandGeneration(voice_context)) {
continue;
}
// Queue our voice
GenerateVoiceCommand(voice_info);
}
// Update our splitters
splitter_context.UpdateInternalState();
}
void CommandGenerator::GenerateVoiceCommand(ServerVoiceInfo& voice_info) {
auto& in_params = voice_info.GetInParams();
const auto channel_count = in_params.channel_count;
for (s32 channel = 0; channel < channel_count; channel++) {
const auto resource_id = in_params.voice_channel_resource_id[channel];
auto& dsp_state = voice_context.GetDspSharedState(resource_id);
auto& channel_resource = voice_context.GetChannelResource(resource_id);
// Decode our samples for our channel
GenerateDataSourceCommand(voice_info, dsp_state, channel);
if (in_params.should_depop) {
in_params.last_volume = 0.0f;
} else if (in_params.splitter_info_id != AudioCommon::NO_SPLITTER ||
in_params.mix_id != AudioCommon::NO_MIX) {
// Apply a biquad filter if needed
GenerateBiquadFilterCommandForVoice(voice_info, dsp_state,
worker_params.mix_buffer_count, channel);
// Base voice volume ramping
GenerateVolumeRampCommand(in_params.last_volume, in_params.volume, channel,
in_params.node_id);
in_params.last_volume = in_params.volume;
if (in_params.mix_id != AudioCommon::NO_MIX) {
// If we're using a mix id
auto& mix_info = mix_context.GetInfo(in_params.mix_id);
const auto& dest_mix_params = mix_info.GetInParams();
// Voice Mixing
GenerateVoiceMixCommand(
channel_resource.GetCurrentMixVolume(), channel_resource.GetLastMixVolume(),
dsp_state, dest_mix_params.buffer_offset, dest_mix_params.buffer_count,
worker_params.mix_buffer_count + channel, in_params.node_id);
// Update last mix volumes
channel_resource.UpdateLastMixVolumes();
} else if (in_params.splitter_info_id != AudioCommon::NO_SPLITTER) {
s32 base = channel;
while (auto* destination_data =
GetDestinationData(in_params.splitter_info_id, base)) {
base += channel_count;
if (!destination_data->IsConfigured()) {
continue;
}
if (destination_data->GetMixId() >= mix_context.GetCount()) {
continue;
}
const auto& mix_info = mix_context.GetInfo(destination_data->GetMixId());
const auto& dest_mix_params = mix_info.GetInParams();
GenerateVoiceMixCommand(
destination_data->CurrentMixVolumes(), destination_data->LastMixVolumes(),
dsp_state, dest_mix_params.buffer_offset, dest_mix_params.buffer_count,
worker_params.mix_buffer_count + channel, in_params.node_id);
destination_data->MarkDirty();
}
}
}
// Update biquad filter enabled states
for (std::size_t i = 0; i < AudioCommon::MAX_BIQUAD_FILTERS; i++) {
in_params.was_biquad_filter_enabled[i] = in_params.biquad_filter[i].enabled;
}
}
}
void CommandGenerator::GenerateSubMixCommands() {
const auto mix_count = mix_context.GetCount();
for (std::size_t i = 0; i < mix_count; i++) {
auto& mix_info = mix_context.GetSortedInfo(i);
const auto& in_params = mix_info.GetInParams();
if (!in_params.in_use || in_params.mix_id == AudioCommon::FINAL_MIX) {
continue;
}
GenerateSubMixCommand(mix_info);
}
}
void CommandGenerator::GenerateFinalMixCommands() {
GenerateFinalMixCommand();
}
void CommandGenerator::PreCommand() {
if (dumping_frame) {
for (std::size_t i = 0; i < splitter_context.GetInfoCount(); i++) {
const auto& base = splitter_context.GetInfo(i);
std::string graph = fmt::format("b[{}]", i);
auto* head = base.GetHead();
while (head != nullptr) {
graph += fmt::format("->{}", head->GetMixId());
head = head->GetNextDestination();
}
LOG_CRITICAL(Audio, "(DSP_TRACE) SplitterGraph splitter_info={}, {}", i, graph);
}
}
}
void CommandGenerator::PostCommand() {
if (dumping_frame) {
dumping_frame = false;
}
}
void CommandGenerator::GenerateDataSourceCommand(ServerVoiceInfo& voice_info, VoiceState& dsp_state,
s32 channel) {
auto& in_params = voice_info.GetInParams();
const auto depop = in_params.should_depop;
if (in_params.mix_id != AudioCommon::NO_MIX) {
auto& mix_info = mix_context.GetInfo(in_params.mix_id);
// mix_info.
// TODO(ogniK): Depop to destination mix
} else if (in_params.splitter_info_id != AudioCommon::NO_SPLITTER) {
// TODO(ogniK): Depop to splitter
}
if (!depop) {
switch (in_params.sample_format) {
case SampleFormat::Pcm16:
DecodeFromWaveBuffers(voice_info, GetChannelMixBuffer(channel), dsp_state, channel,
worker_params.sample_rate, worker_params.sample_count,
in_params.node_id);
break;
case SampleFormat::Adpcm:
ASSERT(channel == 0 && in_params.channel_count == 1);
DecodeFromWaveBuffers(voice_info, GetChannelMixBuffer(0), dsp_state, 0,
worker_params.sample_rate, worker_params.sample_count,
in_params.node_id);
break;
default:
UNREACHABLE_MSG("Unimplemented sample format={}", in_params.sample_format);
}
}
}
void CommandGenerator::GenerateBiquadFilterCommandForVoice(ServerVoiceInfo& voice_info,
VoiceState& dsp_state,
s32 mix_buffer_count, s32 channel) {
for (std::size_t i = 0; i < AudioCommon::MAX_BIQUAD_FILTERS; i++) {
const auto& in_params = voice_info.GetInParams();
auto& biquad_filter = in_params.biquad_filter[i];
// Check if biquad filter is actually used
if (!biquad_filter.enabled) {
continue;
}
// Reinitialize our biquad filter state if it was enabled previously
if (!in_params.was_biquad_filter_enabled[i]) {
std::memset(dsp_state.biquad_filter_state.data(), 0,
dsp_state.biquad_filter_state.size() * sizeof(s64));
}
// Generate biquad filter
GenerateBiquadFilterCommand(mix_buffer_count, biquad_filter, dsp_state.biquad_filter_state,
mix_buffer_count + channel, mix_buffer_count + channel,
worker_params.sample_count, voice_info.GetInParams().node_id);
}
}
void AudioCore::CommandGenerator::GenerateBiquadFilterCommand(
s32 mix_buffer, const BiquadFilterParameter& params, std::array<s64, 2>& state,
std::size_t input_offset, std::size_t output_offset, s32 sample_count, s32 node_id) {
if (dumping_frame) {
LOG_CRITICAL(Audio,
"(DSP_TRACE) GenerateBiquadFilterCommand node_id={}, "
"input_mix_buffer={}, output_mix_buffer={}",
node_id, input_offset, output_offset);
}
const auto* input = GetMixBuffer(input_offset);
auto* output = GetMixBuffer(output_offset);
// Biquad filter parameters
const auto n0 = params.numerator[0];
const auto n1 = params.numerator[1];
const auto n2 = params.numerator[2];
const auto d0 = params.denominator[0];
const auto d1 = params.denominator[1];
// Biquad filter states
auto s0 = state[0];
auto s1 = state[1];
constexpr s64 MIN = std::numeric_limits<int32_t>::min();
constexpr s64 MAX = std::numeric_limits<int32_t>::max();
for (int i = 0; i < sample_count; ++i) {
const auto sample = static_cast<int64_t>(input[i]);
const auto f = (sample * n0 + s0 + 0x4000) >> 15;
const auto y = std::clamp(f, MIN, MAX);
s0 = sample * n1 + y * d0 + s1;
s1 = sample * n2 + y * d1;
output[i] = static_cast<s32>(y);
}
state[0] = s0;
state[1] = s1;
}
ServerSplitterDestinationData* CommandGenerator::GetDestinationData(s32 splitter_id, s32 index) {
if (splitter_id == AudioCommon::NO_SPLITTER) {
return nullptr;
}
return splitter_context.GetDestinationData(splitter_id, index);
}
void CommandGenerator::GenerateVolumeRampCommand(float last_volume, float current_volume,
s32 channel, s32 node_id) {
const auto last = static_cast<s32>(last_volume * 32768.0f);
const auto current = static_cast<s32>(current_volume * 32768.0f);
const auto delta = static_cast<s32>((static_cast<float>(current) - static_cast<float>(last)) /
static_cast<float>(worker_params.sample_count));
if (dumping_frame) {
LOG_CRITICAL(Audio,
"(DSP_TRACE) GenerateVolumeRampCommand node_id={}, input={}, output={}, "
"last_volume={}, current_volume={}",
node_id, GetMixChannelBufferOffset(channel),
GetMixChannelBufferOffset(channel), last_volume, current_volume);
}
// Apply generic gain on samples
ApplyGain(GetChannelMixBuffer(channel), GetChannelMixBuffer(channel), last, delta,
worker_params.sample_count);
}
void CommandGenerator::GenerateVoiceMixCommand(const MixVolumeBuffer& mix_volumes,
const MixVolumeBuffer& last_mix_volumes,
VoiceState& dsp_state, s32 mix_buffer_offset,
s32 mix_buffer_count, s32 voice_index, s32 node_id) {
// Loop all our mix buffers
for (s32 i = 0; i < mix_buffer_count; i++) {
if (last_mix_volumes[i] != 0.0f || mix_volumes[i] != 0.0f) {
const auto delta = static_cast<float>((mix_volumes[i] - last_mix_volumes[i])) /
static_cast<float>(worker_params.sample_count);
if (dumping_frame) {
LOG_CRITICAL(Audio,
"(DSP_TRACE) GenerateVoiceMixCommand node_id={}, input={}, "
"output={}, last_volume={}, current_volume={}",
node_id, voice_index, mix_buffer_offset + i, last_mix_volumes[i],
mix_volumes[i]);
}
dsp_state.previous_samples[i] =
ApplyMixRamp(GetMixBuffer(mix_buffer_offset + i), GetMixBuffer(voice_index),
last_mix_volumes[i], delta, worker_params.sample_count);
} else {
dsp_state.previous_samples[i] = 0;
}
}
}
void CommandGenerator::GenerateSubMixCommand(ServerMixInfo& mix_info) {
if (dumping_frame) {
LOG_CRITICAL(Audio, "(DSP_TRACE) GenerateSubMixCommand");
}
// TODO(ogniK): Depop
// TODO(ogniK): Effects
GenerateMixCommands(mix_info);
}
void CommandGenerator::GenerateMixCommands(ServerMixInfo& mix_info) {
if (!mix_info.HasAnyConnection()) {
return;
}
const auto& in_params = mix_info.GetInParams();
if (in_params.dest_mix_id != AudioCommon::NO_MIX) {
const auto& dest_mix = mix_context.GetInfo(in_params.dest_mix_id);
const auto& dest_in_params = dest_mix.GetInParams();
const auto buffer_count = in_params.buffer_count;
for (s32 i = 0; i < buffer_count; i++) {
for (s32 j = 0; j < dest_in_params.buffer_count; j++) {
const auto mixed_volume = in_params.volume * in_params.mix_volume[i][j];
if (mixed_volume != 0.0f) {
GenerateMixCommand(dest_in_params.buffer_offset + j,
in_params.buffer_offset + i, mixed_volume,
in_params.node_id);
}
}
}
} else if (in_params.splitter_id != AudioCommon::NO_SPLITTER) {
s32 base{};
while (const auto* destination_data = GetDestinationData(in_params.splitter_id, base++)) {
if (!destination_data->IsConfigured()) {
continue;
}
const auto& dest_mix = mix_context.GetInfo(destination_data->GetMixId());
const auto& dest_in_params = dest_mix.GetInParams();
const auto mix_index = (base - 1) % in_params.buffer_count + in_params.buffer_offset;
for (std::size_t i = 0; i < dest_in_params.buffer_count; i++) {
const auto mixed_volume = in_params.volume * destination_data->GetMixVolume(i);
if (mixed_volume != 0.0f) {
GenerateMixCommand(dest_in_params.buffer_offset + i, mix_index, mixed_volume,
in_params.node_id);
}
}
}
}
}
void CommandGenerator::GenerateMixCommand(std::size_t output_offset, std::size_t input_offset,
float volume, s32 node_id) {
if (dumping_frame) {
LOG_CRITICAL(Audio,
"(DSP_TRACE) GenerateMixCommand node_id={}, input={}, output={}, volume={}",
node_id, input_offset, output_offset, volume);
}
auto* output = GetMixBuffer(output_offset);
const auto* input = GetMixBuffer(input_offset);
const s32 gain = static_cast<s32>(volume * 32768.0f);
// Mix with loop unrolling
if (worker_params.sample_count % 4 == 0) {
ApplyMix<4>(output, input, gain, worker_params.sample_count);
} else if (worker_params.sample_count % 2 == 0) {
ApplyMix<2>(output, input, gain, worker_params.sample_count);
} else {
ApplyMix<1>(output, input, gain, worker_params.sample_count);
}
}
void CommandGenerator::GenerateFinalMixCommand() {
if (dumping_frame) {
LOG_CRITICAL(Audio, "(DSP_TRACE) GenerateFinalMixCommand");
}
// TODO(ogniK): Depop
// TODO(ogniK): Effects
auto& mix_info = mix_context.GetFinalMixInfo();
const auto in_params = mix_info.GetInParams();
for (s32 i = 0; i < in_params.buffer_count; i++) {
const s32 gain = static_cast<s32>(in_params.volume * 32768.0f);
if (dumping_frame) {
LOG_CRITICAL(
Audio,
"(DSP_TRACE) ApplyGainWithoutDelta node_id={}, input={}, output={}, volume={}",
in_params.node_id, in_params.buffer_offset + i, in_params.buffer_offset + i,
in_params.volume);
}
ApplyGainWithoutDelta(GetMixBuffer(in_params.buffer_offset + i),
GetMixBuffer(in_params.buffer_offset + i), gain,
worker_params.sample_count);
}
}
s32 CommandGenerator::DecodePcm16(ServerVoiceInfo& voice_info, VoiceState& dsp_state,
s32 sample_count, s32 channel, std::size_t mix_offset) {
auto& in_params = voice_info.GetInParams();
const auto& wave_buffer = in_params.wave_buffer[dsp_state.wave_buffer_index];
if (wave_buffer.buffer_address == 0) {
return 0;
}
if (wave_buffer.buffer_size == 0) {
return 0;
}
if (wave_buffer.end_sample_offset < wave_buffer.start_sample_offset) {
return 0;
}
const auto samples_remaining =
(wave_buffer.end_sample_offset - wave_buffer.start_sample_offset) - dsp_state.offset;
const auto start_offset =
((wave_buffer.start_sample_offset + dsp_state.offset) * in_params.channel_count) *
sizeof(s16);
const auto buffer_pos = wave_buffer.buffer_address + start_offset;
const auto samples_processed = std::min(sample_count, samples_remaining);
if (in_params.channel_count == 1) {
std::vector<s16> buffer(samples_processed);
memory.ReadBlock(buffer_pos, buffer.data(), buffer.size() * sizeof(s16));
for (std::size_t i = 0; i < buffer.size(); i++) {
sample_buffer[mix_offset + i] = buffer[i];
}
} else {
const auto channel_count = in_params.channel_count;
std::vector<s16> buffer(samples_processed * channel_count);
memory.ReadBlock(buffer_pos, buffer.data(), buffer.size() * sizeof(s16));
for (std::size_t i = 0; i < samples_processed; i++) {
sample_buffer[mix_offset + i] = buffer[i * channel_count + channel];
}
}
return samples_processed;
}
s32 CommandGenerator::DecodeAdpcm(ServerVoiceInfo& voice_info, VoiceState& dsp_state,
s32 sample_count, s32 channel, std::size_t mix_offset) {
auto& in_params = voice_info.GetInParams();
const auto& wave_buffer = in_params.wave_buffer[dsp_state.wave_buffer_index];
if (wave_buffer.buffer_address == 0) {
return 0;
}
if (wave_buffer.buffer_size == 0) {
return 0;
}
if (wave_buffer.end_sample_offset < wave_buffer.start_sample_offset) {
return 0;
}
const auto samples_remaining =
(wave_buffer.end_sample_offset - wave_buffer.start_sample_offset) - dsp_state.offset;
const auto start_offset =
((wave_buffer.start_sample_offset + dsp_state.offset) * in_params.channel_count);
const auto buffer_pos = wave_buffer.buffer_address + start_offset;
const auto samples_processed = std::min(sample_count, samples_remaining);
if (start_offset > dsp_state.adpcm_samples.size()) {
dsp_state.adpcm_samples.clear();
}
// TODO(ogniK): Proper ADPCM streaming
if (dsp_state.adpcm_samples.empty()) {
Codec::ADPCM_Coeff coeffs;
memory.ReadBlock(in_params.additional_params_address, coeffs.data(),
sizeof(Codec::ADPCM_Coeff));
std::vector<u8> buffer(wave_buffer.buffer_size);
memory.ReadBlock(wave_buffer.buffer_address, buffer.data(), buffer.size());
dsp_state.adpcm_samples =
std::move(Codec::DecodeADPCM(buffer.data(), buffer.size(), coeffs, dsp_state.context));
}
for (std::size_t i = 0; i < samples_processed; i++) {
const auto sample_offset = i + start_offset;
sample_buffer[mix_offset + i] =
dsp_state.adpcm_samples[sample_offset * in_params.channel_count + channel];
}
return samples_processed;
}
s32* CommandGenerator::GetMixBuffer(std::size_t index) {
return mix_buffer.data() + (index * worker_params.sample_count);
}
const s32* CommandGenerator::GetMixBuffer(std::size_t index) const {
return mix_buffer.data() + (index * worker_params.sample_count);
}
std::size_t CommandGenerator::GetMixChannelBufferOffset(s32 channel) const {
return worker_params.mix_buffer_count + channel;
}
s32* CommandGenerator::GetChannelMixBuffer(s32 channel) {
return GetMixBuffer(worker_params.mix_buffer_count + channel);
}
const s32* CommandGenerator::GetChannelMixBuffer(s32 channel) const {
return GetMixBuffer(worker_params.mix_buffer_count + channel);
}
void CommandGenerator::DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, s32* output,
VoiceState& dsp_state, s32 channel,
s32 target_sample_rate, s32 sample_count,
s32 node_id) {
auto& in_params = voice_info.GetInParams();
if (dumping_frame) {
LOG_CRITICAL(Audio,
"(DSP_TRACE) DecodeFromWaveBuffers, node_id={}, channel={}, "
"format={}, sample_count={}, sample_rate={}, mix_id={}, splitter_id={}",
node_id, channel, in_params.sample_format, sample_count, in_params.sample_rate,
in_params.mix_id, in_params.splitter_info_id);
}
ASSERT_OR_EXECUTE(output != nullptr, { return; });
const auto resample_rate = static_cast<s32>(
static_cast<float>(in_params.sample_rate) / static_cast<float>(target_sample_rate) *
static_cast<float>(static_cast<s32>(in_params.pitch * 32768.0f)));
auto* output_base = output;
if ((dsp_state.fraction + sample_count * resample_rate) > (SCALED_MIX_BUFFER_SIZE - 4ULL)) {
return;
}
auto min_required_samples =
std::min(static_cast<s32>(SCALED_MIX_BUFFER_SIZE) - dsp_state.fraction, resample_rate);
if (min_required_samples >= sample_count) {
min_required_samples = sample_count;
}
std::size_t temp_mix_offset{};
bool is_buffer_completed{false};
auto samples_remaining = sample_count;
while (samples_remaining > 0 && !is_buffer_completed) {
const auto samples_to_output = std::min(samples_remaining, min_required_samples);
const auto samples_to_read = (samples_to_output * resample_rate + dsp_state.fraction) >> 15;
if (!in_params.behavior_flags.is_pitch_and_src_skipped) {
// Append sample histtory for resampler
for (std::size_t i = 0; i < AudioCommon::MAX_SAMPLE_HISTORY; i++) {
sample_buffer[temp_mix_offset + i] = dsp_state.sample_history[i];
}
temp_mix_offset += 4;
}
s32 samples_read{};
while (samples_read < samples_to_read) {
const auto& wave_buffer = in_params.wave_buffer[dsp_state.wave_buffer_index];
// No more data can be read
if (!dsp_state.is_wave_buffer_valid[dsp_state.wave_buffer_index]) {
is_buffer_completed = true;
break;
}
if (in_params.sample_format == SampleFormat::Adpcm && dsp_state.offset == 0 &&
wave_buffer.context_address != 0 && wave_buffer.context_size != 0) {
// TODO(ogniK): ADPCM loop context
}
s32 samples_decoded{0};
switch (in_params.sample_format) {
case SampleFormat::Pcm16:
samples_decoded = DecodePcm16(voice_info, dsp_state, samples_to_read - samples_read,
channel, temp_mix_offset);
break;
case SampleFormat::Adpcm:
samples_decoded = DecodeAdpcm(voice_info, dsp_state, samples_to_read - samples_read,
channel, temp_mix_offset);
break;
default:
UNREACHABLE_MSG("Unimplemented sample format={}", in_params.sample_format);
}
temp_mix_offset += samples_decoded;
samples_read += samples_decoded;
dsp_state.offset += samples_decoded;
dsp_state.played_sample_count += samples_decoded;
if (dsp_state.offset >=
(wave_buffer.end_sample_offset - wave_buffer.start_sample_offset) ||
samples_decoded == 0) {
// Reset our sample offset
dsp_state.offset = 0;
if (wave_buffer.is_looping) {
if (samples_decoded == 0) {
// End of our buffer
is_buffer_completed = true;
break;
}
if (in_params.behavior_flags.is_played_samples_reset_at_loop_point.Value()) {
dsp_state.played_sample_count = 0;
}
} else {
if (in_params.sample_format == SampleFormat::Adpcm) {
// TODO(ogniK): Remove this when ADPCM streaming implemented
dsp_state.adpcm_samples.clear();
}
// Update our wave buffer states
dsp_state.is_wave_buffer_valid[dsp_state.wave_buffer_index] = false;
dsp_state.wave_buffer_consumed++;
dsp_state.wave_buffer_index =
(dsp_state.wave_buffer_index + 1) % AudioCommon::MAX_WAVE_BUFFERS;
if (wave_buffer.end_of_stream) {
dsp_state.played_sample_count = 0;
}
}
}
}
if (in_params.behavior_flags.is_pitch_and_src_skipped.Value()) {
// No need to resample
memcpy(output, sample_buffer.data(), samples_read * sizeof(s32));
} else {
std::memset(sample_buffer.data() + temp_mix_offset, 0,
sizeof(s32) * (samples_to_read - samples_read));
AudioCore::Resample(output, sample_buffer.data(), resample_rate, dsp_state.fraction,
samples_to_output);
// Resample
for (std::size_t i = 0; i < AudioCommon::MAX_SAMPLE_HISTORY; i++) {
dsp_state.sample_history[i] = sample_buffer[samples_to_read + i];
}
}
output += samples_to_output;
samples_remaining -= samples_to_output;
}
}
} // namespace AudioCore

View File

@ -0,0 +1,83 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include "audio_core/common.h"
#include "audio_core/voice_context.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
namespace Core::Memory {
class Memory;
}
namespace AudioCore {
class MixContext;
class SplitterContext;
class ServerSplitterDestinationData;
class ServerMixInfo;
using MixVolumeBuffer = std::array<float, AudioCommon::MAX_MIX_BUFFERS>;
class CommandGenerator {
public:
explicit CommandGenerator(AudioCommon::AudioRendererParameter& worker_params,
VoiceContext& voice_context, MixContext& mix_context,
SplitterContext& splitter_context, Core::Memory::Memory& memory);
~CommandGenerator();
void ClearMixBuffers();
void GenerateVoiceCommands();
void GenerateVoiceCommand(ServerVoiceInfo& voice_info);
void GenerateSubMixCommands();
void GenerateFinalMixCommands();
void PreCommand();
void PostCommand();
s32* GetChannelMixBuffer(s32 channel);
const s32* GetChannelMixBuffer(s32 channel) const;
s32* GetMixBuffer(std::size_t index);
const s32* GetMixBuffer(std::size_t index) const;
std::size_t GetMixChannelBufferOffset(s32 channel) const;
private:
void GenerateDataSourceCommand(ServerVoiceInfo& voice_info, VoiceState& dsp_state, s32 channel);
void GenerateBiquadFilterCommandForVoice(ServerVoiceInfo& voice_info, VoiceState& dsp_state,
s32 mix_buffer_count, s32 channel);
void GenerateVolumeRampCommand(float last_volume, float current_volume, s32 channel,
s32 node_id);
void GenerateVoiceMixCommand(const MixVolumeBuffer& mix_volumes,
const MixVolumeBuffer& last_mix_volumes, VoiceState& dsp_state,
s32 mix_buffer_offset, s32 mix_buffer_count, s32 voice_index,
s32 node_id);
void GenerateSubMixCommand(ServerMixInfo& mix_info);
void GenerateMixCommands(ServerMixInfo& mix_info);
void GenerateMixCommand(std::size_t output_offset, std::size_t input_offset, float volume,
s32 node_id);
void GenerateFinalMixCommand();
void GenerateBiquadFilterCommand(s32 mix_buffer, const BiquadFilterParameter& params,
std::array<s64, 2>& state, std::size_t input_offset,
std::size_t output_offset, s32 sample_count, s32 node_id);
void GenerateDepopPrepareCommand(VoiceState& dsp_state);
ServerSplitterDestinationData* GetDestinationData(s32 splitter_id, s32 index);
// DSP Code
s32 DecodePcm16(ServerVoiceInfo& voice_info, VoiceState& dsp_state, s32 sample_count,
s32 channel, std::size_t mix_offset);
s32 DecodeAdpcm(ServerVoiceInfo& voice_info, VoiceState& dsp_state, s32 sample_count,
s32 channel, std::size_t mix_offset);
void DecodeFromWaveBuffers(ServerVoiceInfo& voice_info, s32* output, VoiceState& dsp_state,
s32 channel, s32 target_sample_rate, s32 sample_count, s32 node_id);
void Resample(s32* output, s32* input, s32 pitch, s32& fraction, s32 sample_count);
AudioCommon::AudioRendererParameter& worker_params;
VoiceContext& voice_context;
MixContext& mix_context;
SplitterContext& splitter_context;
Core::Memory::Memory& memory;
std::vector<s32> mix_buffer{};
std::vector<s32> sample_buffer{};
bool dumping_frame{false};
};
} // namespace AudioCore

View File

@ -8,13 +8,29 @@
#include "common/swap.h"
#include "core/hle/result.h"
namespace AudioCore {
namespace AudioCommon {
namespace Audren {
constexpr ResultCode ERR_INVALID_PARAMETERS{ErrorModule::Audio, 41};
}
constexpr ResultCode ERR_SPLITTER_SORT_FAILED{ErrorModule::Audio, 43};
} // namespace Audren
constexpr u32_le CURRENT_PROCESS_REVISION = Common::MakeMagic('R', 'E', 'V', '8');
constexpr std::size_t MAX_MIX_BUFFERS = 24;
constexpr std::size_t MAX_BIQUAD_FILTERS = 2;
constexpr std::size_t MAX_CHANNEL_COUNT = 6;
constexpr std::size_t MAX_WAVE_BUFFERS = 4;
constexpr std::size_t MAX_SAMPLE_HISTORY = 4;
constexpr u32 STREAM_SAMPLE_RATE = 48000;
constexpr u32 STREAM_NUM_CHANNELS = 6;
constexpr s32 NO_SPLITTER = -1;
constexpr s32 NO_MIX = 0x7fffffff;
constexpr s32 NO_FINAL_MIX = std::numeric_limits<s32>::min();
constexpr s32 FINAL_MIX = 0;
constexpr std::size_t TEMP_MIX_BASE_SIZE = 0x3f00; // TODO(ogniK): Work out this constant
// Any size checks seem to take the sample history into account
// and our const ends up being 0x3f04, the 4 bytes are most
// likely the sample history
constexpr std::size_t TOTAL_TEMP_MIX_SIZE = TEMP_MIX_BASE_SIZE + AudioCommon::MAX_SAMPLE_HISTORY;
static constexpr u32 VersionFromRevision(u32_le rev) {
// "REV7" -> 7
@ -45,4 +61,46 @@ static constexpr bool CanConsumeBuffer(std::size_t size, std::size_t offset, std
return true;
}
} // namespace AudioCore
struct UpdateDataSizes {
u32_le behavior{};
u32_le memory_pool{};
u32_le voice{};
u32_le voice_channel_resource{};
u32_le effect{};
u32_le mixer{};
u32_le sink{};
u32_le performance{};
u32_le splitter{};
u32_le render_info{};
INSERT_PADDING_WORDS(4);
};
static_assert(sizeof(UpdateDataSizes) == 0x38, "UpdateDataSizes is an invalid size");
struct UpdateDataHeader {
u32_le revision{};
UpdateDataSizes size{};
u32_le total_size{};
};
static_assert(sizeof(UpdateDataHeader) == 0x40, "UpdateDataHeader is an invalid size");
struct AudioRendererParameter {
u32_le sample_rate;
u32_le sample_count;
u32_le mix_buffer_count;
u32_le submix_count;
u32_le voice_count;
u32_le sink_count;
u32_le effect_count;
u32_le performance_frame_count;
u8 is_voice_drop_enabled;
u8 unknown_21;
u8 unknown_22;
u8 execution_mode;
u32_le splitter_count;
u32_le num_splitter_send_channels;
u32_le unknown_30;
u32_le revision;
};
static_assert(sizeof(AudioRendererParameter) == 52, "AudioRendererParameter is an invalid size");
} // namespace AudioCommon

View File

@ -23,14 +23,24 @@ class CubebSinkStream final : public SinkStream {
public:
CubebSinkStream(cubeb* ctx, u32 sample_rate, u32 num_channels_, cubeb_devid output_device,
const std::string& name)
: ctx{ctx}, num_channels{std::min(num_channels_, 2u)}, time_stretch{sample_rate,
: ctx{ctx}, num_channels{std::min(num_channels_, 6u)}, time_stretch{sample_rate,
num_channels} {
cubeb_stream_params params{};
params.rate = sample_rate;
params.channels = num_channels;
params.format = CUBEB_SAMPLE_S16NE;
params.layout = num_channels == 1 ? CUBEB_LAYOUT_MONO : CUBEB_LAYOUT_STEREO;
switch (num_channels) {
case 1:
params.layout = CUBEB_LAYOUT_MONO;
break;
case 2:
params.layout = CUBEB_LAYOUT_STEREO;
break;
case 6:
params.layout = CUBEB_LAYOUT_3F2_LFE;
break;
}
u32 minimum_latency{};
if (cubeb_get_min_latency(ctx, &params, &minimum_latency) != CUBEB_OK) {

View File

@ -0,0 +1,39 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "audio_core/effect_context.h"
namespace AudioCore {
EffectContext::EffectContext(std::size_t effect_count) : effect_count(effect_count) {
for (std::size_t i = 0; i < effect_count; i++) {
effects.push_back(std::make_unique<EffectStubbed>());
}
}
EffectContext::~EffectContext() = default;
std::size_t EffectContext::GetCount() const {
return effect_count;
}
EffectBase* EffectContext::GetInfo(std::size_t i) {
return effects.at(i).get();
}
EffectStubbed::EffectStubbed() : EffectBase::EffectBase() {}
EffectStubbed::~EffectStubbed() = default;
void EffectStubbed::Update(EffectInfo::InParams& in_params) {
if (in_params.is_new) {
usage = UsageStatus::New;
}
}
EffectBase::EffectBase() = default;
EffectBase::~EffectBase() = default;
UsageStatus EffectBase::GetUsage() const {
return usage;
}
} // namespace AudioCore

View File

@ -0,0 +1,114 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <memory>
#include <vector>
#include "audio_core/common.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/swap.h"
namespace AudioCore {
enum class EffectType : u8 {
Invalid = 0,
BufferMixer = 1,
Aux = 2,
Delay = 3,
Reverb = 4,
I3dl2Reverb = 5,
BiquadFilter = 6,
};
enum class UsageStatus : u8 {
Invalid = 0,
New = 1,
Initialized = 2,
Used = 3,
Removed = 4,
};
struct BufferMixerParams {
std::array<s8, AudioCommon::MAX_MIX_BUFFERS> input{};
std::array<s8, AudioCommon::MAX_MIX_BUFFERS> output{};
std::array<float_le, AudioCommon::MAX_MIX_BUFFERS> volume{};
s32_le count{};
};
static_assert(sizeof(BufferMixerParams) == 0x94, "BufferMixerParams is an invalid size");
struct AuxInfo {
std::array<s8, AudioCommon::MAX_MIX_BUFFERS> input_mix_buffers{};
std::array<s8, AudioCommon::MAX_MIX_BUFFERS> output_mix_buffers{};
u32_le count{};
s32_le sample_rate{};
s32_le sample_count{};
s32_le mix_buffer_count{};
u64_le send_buffer_info{};
u64_le send_buffer_base{};
u64_le return_buffer_info{};
u64_le return_buffer_base{};
};
static_assert(sizeof(AuxInfo) == 0x60, "AuxInfo is an invalid size");
class EffectInfo {
public:
struct InParams {
EffectType type{};
u8 is_new{};
u8 is_enabled{};
INSERT_PADDING_BYTES(1);
s32_le mix_id{};
u64_le buffer_address{};
u64_le buffer_size{};
s32_le priority{};
INSERT_PADDING_BYTES(4);
union {
std::array<u8, 0xa0> raw;
};
};
static_assert(sizeof(EffectInfo::InParams) == 0xc0, "InParams is an invalid size");
struct OutParams {
UsageStatus status{};
INSERT_PADDING_BYTES(15);
};
static_assert(sizeof(EffectInfo::OutParams) == 0x10, "OutParams is an invalid size");
};
class EffectBase {
public:
EffectBase();
~EffectBase();
virtual void Update(EffectInfo::InParams& in_params) = 0;
UsageStatus GetUsage() const;
protected:
UsageStatus usage{UsageStatus::Invalid};
};
class EffectStubbed : public EffectBase {
public:
explicit EffectStubbed();
~EffectStubbed();
void Update(EffectInfo::InParams& in_params) override;
};
class EffectContext {
public:
explicit EffectContext(std::size_t effect_count);
~EffectContext();
std::size_t GetCount() const;
EffectBase* GetInfo(std::size_t i);
private:
std::size_t effect_count{};
std::vector<std::unique_ptr<EffectBase>> effects;
};
} // namespace AudioCore

View File

@ -0,0 +1,515 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "audio_core/behavior_info.h"
#include "audio_core/effect_context.h"
#include "audio_core/info_updater.h"
#include "audio_core/memory_pool.h"
#include "audio_core/mix_context.h"
#include "audio_core/sink_context.h"
#include "audio_core/splitter_context.h"
#include "audio_core/voice_context.h"
#include "common/logging/log.h"
namespace AudioCore {
InfoUpdater::InfoUpdater(const std::vector<u8>& in_params, std::vector<u8>& out_params,
BehaviorInfo& behavior_info)
: in_params(in_params), out_params(out_params), behavior_info(behavior_info) {
ASSERT(
AudioCommon::CanConsumeBuffer(in_params.size(), 0, sizeof(AudioCommon::UpdateDataHeader)));
std::memcpy(&input_header, in_params.data(), sizeof(AudioCommon::UpdateDataHeader));
output_header.total_size = sizeof(AudioCommon::UpdateDataHeader);
}
InfoUpdater::~InfoUpdater() = default;
bool InfoUpdater::UpdateBehaviorInfo(BehaviorInfo& in_behavior_info) {
if (input_header.size.behavior != sizeof(BehaviorInfo::InParams)) {
LOG_ERROR(Audio, "Behavior info is an invalid size, expecting 0x{:X} but got 0x{:X}",
sizeof(BehaviorInfo::InParams), input_header.size.behavior);
return false;
}
if (!AudioCommon::CanConsumeBuffer(in_params.size(), input_offset,
sizeof(BehaviorInfo::InParams))) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
BehaviorInfo::InParams behavior_in{};
std::memcpy(&behavior_in, in_params.data() + input_offset, sizeof(BehaviorInfo::InParams));
input_offset += sizeof(BehaviorInfo::InParams);
// Make sure it's an audio revision we can actually support
if (!AudioCommon::IsValidRevision(behavior_in.revision)) {
LOG_ERROR(Audio, "Invalid input revision, revision=0x{:08X}", behavior_in.revision);
return false;
}
// Make sure that our behavior info revision matches the input
if (in_behavior_info.GetUserRevision() != behavior_in.revision) {
LOG_ERROR(Audio,
"User revision differs from input revision, expecting 0x{:08X} but got 0x{:08X}",
in_behavior_info.GetUserRevision(), behavior_in.revision);
return false;
}
// Update behavior info flags
in_behavior_info.ClearError();
in_behavior_info.UpdateFlags(behavior_in.flags);
return true;
}
bool InfoUpdater::UpdateMemoryPools(std::vector<ServerMemoryPoolInfo>& memory_pool_info) {
const auto force_mapping = behavior_info.IsMemoryPoolForceMappingEnabled();
const auto memory_pool_count = memory_pool_info.size();
const auto total_memory_pool_in = sizeof(ServerMemoryPoolInfo::InParams) * memory_pool_count;
const auto total_memory_pool_out = sizeof(ServerMemoryPoolInfo::OutParams) * memory_pool_count;
if (input_header.size.memory_pool != total_memory_pool_in) {
LOG_ERROR(Audio, "Memory pools are an invalid size, expecting 0x{:X} but got 0x{:X}",
total_memory_pool_in, input_header.size.memory_pool);
return false;
}
if (!AudioCommon::CanConsumeBuffer(in_params.size(), input_offset, total_memory_pool_in)) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
std::vector<ServerMemoryPoolInfo::InParams> mempool_in(memory_pool_count);
std::vector<ServerMemoryPoolInfo::OutParams> mempool_out(memory_pool_count);
std::memcpy(mempool_in.data(), in_params.data() + input_offset, total_memory_pool_in);
input_offset += total_memory_pool_in;
// Update our memory pools
for (std::size_t i = 0; i < memory_pool_count; i++) {
if (!memory_pool_info[i].Update(mempool_in[i], mempool_out[i])) {
LOG_ERROR(Audio, "Failed to update memory pool {}!", i);
return false;
}
}
if (!AudioCommon::CanConsumeBuffer(out_params.size(), output_offset,
sizeof(BehaviorInfo::InParams))) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
std::memcpy(out_params.data() + output_offset, mempool_out.data(), total_memory_pool_out);
output_offset += total_memory_pool_out;
output_header.size.memory_pool = static_cast<u32>(total_memory_pool_out);
return true;
}
bool InfoUpdater::UpdateVoiceChannelResources(VoiceContext& voice_context) {
const auto voice_count = voice_context.GetVoiceCount();
const auto voice_size = voice_count * sizeof(VoiceChannelResource::InParams);
std::vector<VoiceChannelResource::InParams> resources_in(voice_count);
if (input_header.size.voice_channel_resource != voice_size) {
LOG_ERROR(Audio, "VoiceChannelResource is an invalid size, expecting 0x{:X} but got 0x{:X}",
voice_size, input_header.size.voice_channel_resource);
return false;
}
if (!AudioCommon::CanConsumeBuffer(in_params.size(), input_offset, voice_size)) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
std::memcpy(resources_in.data(), in_params.data() + input_offset, voice_size);
input_offset += voice_size;
// Update our channel resources
for (std::size_t i = 0; i < voice_count; i++) {
// Grab our channel resource
auto& resource = voice_context.GetChannelResource(i);
resource.Update(resources_in[i]);
}
return true;
}
bool InfoUpdater::UpdateVoices(VoiceContext& voice_context,
std::vector<ServerMemoryPoolInfo>& memory_pool_info,
VAddr audio_codec_dsp_addr) {
const auto voice_count = voice_context.GetVoiceCount();
std::vector<VoiceInfo::InParams> voice_in(voice_count);
std::vector<VoiceInfo::OutParams> voice_out(voice_count);
const auto voice_in_size = voice_count * sizeof(VoiceInfo::InParams);
const auto voice_out_size = voice_count * sizeof(VoiceInfo::OutParams);
if (input_header.size.voice != voice_in_size) {
LOG_ERROR(Audio, "Voices are an invalid size, expecting 0x{:X} but got 0x{:X}",
voice_in_size, input_header.size.voice);
return false;
}
if (!AudioCommon::CanConsumeBuffer(in_params.size(), input_offset, voice_in_size)) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
std::memcpy(voice_in.data(), in_params.data() + input_offset, voice_in_size);
input_offset += voice_in_size;
// Set all voices to not be in use
for (std::size_t i = 0; i < voice_count; i++) {
voice_context.GetInfo(i).GetInParams().in_use = false;
}
// Update our voices
for (std::size_t i = 0; i < voice_count; i++) {
auto& in_params = voice_in[i];
const auto channel_count = static_cast<std::size_t>(in_params.channel_count);
// Skip if it's not currently in use
if (!in_params.is_in_use) {
continue;
}
// Voice states for each channel
std::array<VoiceState*, AudioCommon::MAX_CHANNEL_COUNT> voice_states{};
ASSERT(in_params.id < voice_count);
// Grab our current voice info
auto& voice_info = voice_context.GetInfo(static_cast<std::size_t>(in_params.id));
ASSERT(channel_count <= AudioCommon::MAX_CHANNEL_COUNT);
// Get all our channel voice states
for (std::size_t channel = 0; channel < channel_count; channel++) {
voice_states[channel] =
&voice_context.GetState(in_params.voice_channel_resource_ids[channel]);
}
if (in_params.is_new) {
// Default our values for our voice
voice_info.Initialize();
if (channel_count == 0 || channel_count > AudioCommon::MAX_CHANNEL_COUNT) {
continue;
}
// Zero out our voice states
for (std::size_t channel = 0; channel < channel_count; channel++) {
std::memset(voice_states[channel], 0, sizeof(VoiceState));
}
}
// Update our voice
voice_info.UpdateParameters(in_params, behavior_info);
// TODO(ogniK): Handle mapping errors with behavior info based on in params response
// Update our wave buffers
voice_info.UpdateWaveBuffers(in_params, voice_states, behavior_info);
voice_info.WriteOutStatus(voice_out[i], in_params, voice_states);
}
if (!AudioCommon::CanConsumeBuffer(out_params.size(), output_offset, voice_out_size)) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
std::memcpy(out_params.data() + output_offset, voice_out.data(), voice_out_size);
output_offset += voice_out_size;
output_header.size.voice = static_cast<u32>(voice_out_size);
return true;
}
bool InfoUpdater::UpdateEffects(EffectContext& effect_context, bool is_active) {
const auto effect_count = effect_context.GetCount();
std::vector<EffectInfo::InParams> effect_in(effect_count);
std::vector<EffectInfo::OutParams> effect_out(effect_count);
const auto total_effect_in = effect_count * sizeof(EffectInfo::InParams);
const auto total_effect_out = effect_count * sizeof(EffectInfo::OutParams);
if (input_header.size.effect != total_effect_in) {
LOG_ERROR(Audio, "Effects are an invalid size, expecting 0x{:X} but got 0x{:X}",
total_effect_in, input_header.size.effect);
return false;
}
if (!AudioCommon::CanConsumeBuffer(in_params.size(), input_offset, total_effect_in)) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
std::memcpy(effect_in.data(), in_params.data() + input_offset, total_effect_in);
input_offset += total_effect_in;
// Update effects
for (std::size_t i = 0; i < effect_count; i++) {
auto* info = effect_context.GetInfo(i);
info->Update(effect_in[i]);
// TODO(ogniK): Update individual effects
if ((!is_active && info->GetUsage() != UsageStatus::New) ||
info->GetUsage() == UsageStatus::Removed) {
effect_out[i].status = UsageStatus::Removed;
} else if (info->GetUsage() == UsageStatus::New) {
effect_out[i].status = UsageStatus::New;
} else {
effect_out[i].status = UsageStatus::Used;
}
}
if (!AudioCommon::CanConsumeBuffer(out_params.size(), output_offset, total_effect_out)) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
std::memcpy(out_params.data() + output_offset, effect_out.data(), total_effect_out);
output_offset += total_effect_out;
output_header.size.effect = static_cast<u32>(total_effect_out);
return true;
}
bool InfoUpdater::UpdateSplitterInfo(SplitterContext& splitter_context) {
std::size_t start_offset = input_offset;
std::size_t bytes_read{};
// Update splitter context
if (!splitter_context.Update(in_params, input_offset, bytes_read)) {
LOG_ERROR(Audio, "Failed to update splitter context!");
return false;
}
const auto consumed = input_offset - start_offset;
if (input_header.size.splitter != consumed) {
LOG_ERROR(Audio, "Splitters is an invalid size, expecting 0x{:X} but got 0x{:X}",
bytes_read, input_header.size.splitter);
return false;
}
return true;
}
ResultCode InfoUpdater::UpdateMixes(MixContext& mix_context, std::size_t mix_buffer_count,
SplitterContext& splitter_context) {
std::vector<MixInfo::InParams> mix_in_params;
if (!behavior_info.IsMixInParameterDirtyOnlyUpdateSupported()) {
// If we're not dirty, get ALL mix in parameters
const auto context_mix_count = mix_context.GetCount();
const auto total_mix_in = context_mix_count * sizeof(MixInfo::InParams);
if (input_header.size.mixer != total_mix_in) {
LOG_ERROR(Audio, "Mixer is an invalid size, expecting 0x{:X} but got 0x{:X}",
total_mix_in, input_header.size.mixer);
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
if (!AudioCommon::CanConsumeBuffer(in_params.size(), input_offset, total_mix_in)) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
mix_in_params.resize(context_mix_count);
std::memcpy(mix_in_params.data(), in_params.data() + input_offset, total_mix_in);
input_offset += total_mix_in;
} else {
// Only update the "dirty" mixes
MixInfo::DirtyHeader dirty_header{};
if (!AudioCommon::CanConsumeBuffer(in_params.size(), input_offset,
sizeof(MixInfo::DirtyHeader))) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
std::memcpy(&dirty_header, in_params.data() + input_offset, sizeof(MixInfo::DirtyHeader));
input_offset += sizeof(MixInfo::DirtyHeader);
const auto total_mix_in =
dirty_header.mixer_count * sizeof(MixInfo::InParams) + sizeof(MixInfo::DirtyHeader);
if (input_header.size.mixer != total_mix_in) {
LOG_ERROR(Audio, "Mixer is an invalid size, expecting 0x{:X} but got 0x{:X}",
total_mix_in, input_header.size.mixer);
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
if (dirty_header.mixer_count != 0) {
mix_in_params.resize(dirty_header.mixer_count);
std::memcpy(mix_in_params.data(), in_params.data() + input_offset,
mix_in_params.size() * sizeof(MixInfo::InParams));
input_offset += mix_in_params.size() * sizeof(MixInfo::InParams);
}
}
// Get our total input count
const auto mix_count = mix_in_params.size();
if (!behavior_info.IsMixInParameterDirtyOnlyUpdateSupported()) {
// Only verify our buffer count if we're not dirty
std::size_t total_buffer_count{};
for (std::size_t i = 0; i < mix_count; i++) {
const auto& in = mix_in_params[i];
total_buffer_count += in.buffer_count;
if (in.dest_mix_id > mix_count && in.dest_mix_id != AudioCommon::NO_MIX &&
in.mix_id != AudioCommon::FINAL_MIX) {
LOG_ERROR(
Audio,
"Invalid mix destination, mix_id={:X}, dest_mix_id={:X}, mix_buffer_count={:X}",
in.mix_id, in.dest_mix_id, mix_buffer_count);
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
}
if (total_buffer_count > mix_buffer_count) {
LOG_ERROR(Audio,
"Too many mix buffers used! mix_buffer_count={:X}, requesting_buffers={:X}",
mix_buffer_count, total_buffer_count);
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
}
if (mix_buffer_count == 0) {
LOG_ERROR(Audio, "No mix buffers!");
return AudioCommon::Audren::ERR_INVALID_PARAMETERS;
}
bool should_sort = false;
for (std::size_t i = 0; i < mix_count; i++) {
const auto& mix_in = mix_in_params[i];
std::size_t target_mix{};
if (behavior_info.IsMixInParameterDirtyOnlyUpdateSupported()) {
target_mix = mix_in.mix_id;
} else {
// Non dirty supported games just use i instead of the actual mix_id
target_mix = i;
}
auto& mix_info = mix_context.GetInfo(target_mix);
auto& mix_info_params = mix_info.GetInParams();
if (mix_info_params.in_use != mix_in.in_use) {
mix_info_params.in_use = mix_in.in_use;
// TODO(ogniK): Update effect processing order
should_sort = true;
}
if (mix_in.in_use) {
should_sort |= mix_info.Update(mix_context.GetEdgeMatrix(), mix_in, behavior_info,
splitter_context);
}
}
if (should_sort && behavior_info.IsSplitterSupported()) {
// Sort our splitter data
if (!mix_context.TsortInfo(splitter_context)) {
return AudioCommon::Audren::ERR_SPLITTER_SORT_FAILED;
}
}
// TODO(ogniK): Sort when splitter is suppoorted
return RESULT_SUCCESS;
}
bool InfoUpdater::UpdateSinks(SinkContext& sink_context) {
const auto sink_count = sink_context.GetCount();
std::vector<SinkInfo::InParams> sink_in_params(sink_count);
const auto total_sink_in = sink_count * sizeof(SinkInfo::InParams);
if (input_header.size.sink != total_sink_in) {
LOG_ERROR(Audio, "Sinks are an invalid size, expecting 0x{:X} but got 0x{:X}",
total_sink_in, input_header.size.effect);
return false;
}
if (!AudioCommon::CanConsumeBuffer(in_params.size(), input_offset, total_sink_in)) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
std::memcpy(sink_in_params.data(), in_params.data() + input_offset, total_sink_in);
input_offset += total_sink_in;
// TODO(ogniK): Properly update sinks
if (!sink_in_params.empty()) {
sink_context.UpdateMainSink(sink_in_params[0]);
}
output_header.size.sink = static_cast<u32>(0x20 * sink_count);
output_offset += 0x20 * sink_count;
return true;
}
bool InfoUpdater::UpdatePerformanceBuffer() {
output_header.size.performance = 0x10;
output_offset += 0x10;
return true;
}
bool InfoUpdater::UpdateErrorInfo(BehaviorInfo& in_behavior_info) {
const auto total_beahvior_info_out = sizeof(BehaviorInfo::OutParams);
if (!AudioCommon::CanConsumeBuffer(out_params.size(), output_offset, total_beahvior_info_out)) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
BehaviorInfo::OutParams behavior_info_out{};
behavior_info.CopyErrorInfo(behavior_info_out);
std::memcpy(out_params.data() + output_offset, &behavior_info_out, total_beahvior_info_out);
output_offset += total_beahvior_info_out;
output_header.size.behavior = total_beahvior_info_out;
return true;
}
struct RendererInfo {
u64_le elasped_frame_count{};
INSERT_PADDING_WORDS(2);
};
static_assert(sizeof(RendererInfo) == 0x10, "RendererInfo is an invalid size");
bool InfoUpdater::UpdateRendererInfo(std::size_t elapsed_frame_count) {
const auto total_renderer_info_out = sizeof(RendererInfo);
if (!AudioCommon::CanConsumeBuffer(out_params.size(), output_offset, total_renderer_info_out)) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
RendererInfo out{};
out.elasped_frame_count = elapsed_frame_count;
std::memcpy(out_params.data() + output_offset, &out, total_renderer_info_out);
output_offset += total_renderer_info_out;
output_header.size.render_info = total_renderer_info_out;
return true;
}
bool InfoUpdater::CheckConsumedSize() const {
if (output_offset != out_params.size()) {
LOG_ERROR(Audio, "Output is not consumed! Consumed {}, but requires {}. {} bytes remaining",
output_offset, out_params.size(), out_params.size() - output_offset);
return false;
}
/*if (input_offset != in_params.size()) {
LOG_ERROR(Audio, "Input is not consumed!");
return false;
}*/
return true;
}
bool InfoUpdater::WriteOutputHeader() {
if (!AudioCommon::CanConsumeBuffer(out_params.size(), 0,
sizeof(AudioCommon::UpdateDataHeader))) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
output_header.revision = AudioCommon::CURRENT_PROCESS_REVISION;
const auto& sz = output_header.size;
output_header.total_size += sz.behavior + sz.memory_pool + sz.voice +
sz.voice_channel_resource + sz.effect + sz.mixer + sz.sink +
sz.performance + sz.splitter + sz.render_info;
std::memcpy(out_params.data(), &output_header, sizeof(AudioCommon::UpdateDataHeader));
return true;
}
} // namespace AudioCore

View File

@ -0,0 +1,58 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <vector>
#include "audio_core/common.h"
#include "common/common_types.h"
namespace AudioCore {
class BehaviorInfo;
class ServerMemoryPoolInfo;
class VoiceContext;
class EffectContext;
class MixContext;
class SinkContext;
class SplitterContext;
class InfoUpdater {
public:
// TODO(ogniK): Pass process handle when we support it
InfoUpdater(const std::vector<u8>& in_params, std::vector<u8>& out_params,
BehaviorInfo& behavior_info);
~InfoUpdater();
bool UpdateBehaviorInfo(BehaviorInfo& in_behavior_info);
bool UpdateMemoryPools(std::vector<ServerMemoryPoolInfo>& memory_pool_info);
bool UpdateVoiceChannelResources(VoiceContext& voice_context);
bool UpdateVoices(VoiceContext& voice_context,
std::vector<ServerMemoryPoolInfo>& memory_pool_info,
VAddr audio_codec_dsp_addr);
bool UpdateEffects(EffectContext& effect_context, bool is_active);
bool UpdateSplitterInfo(SplitterContext& splitter_context);
ResultCode UpdateMixes(MixContext& mix_context, std::size_t mix_buffer_count,
SplitterContext& splitter_context);
bool UpdateSinks(SinkContext& sink_context);
bool UpdatePerformanceBuffer();
bool UpdateErrorInfo(BehaviorInfo& in_behavior_info);
bool UpdateRendererInfo(std::size_t elapsed_frame_count);
bool CheckConsumedSize() const;
bool WriteOutputHeader();
private:
const std::vector<u8>& in_params;
std::vector<u8>& out_params;
BehaviorInfo& behavior_info;
AudioCommon::UpdateDataHeader input_header{};
AudioCommon::UpdateDataHeader output_header{};
std::size_t input_offset{sizeof(AudioCommon::UpdateDataHeader)};
std::size_t output_offset{sizeof(AudioCommon::UpdateDataHeader)};
};
} // namespace AudioCore

View File

@ -0,0 +1,62 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "audio_core/memory_pool.h"
#include "common/logging/log.h"
namespace AudioCore {
ServerMemoryPoolInfo::ServerMemoryPoolInfo() = default;
ServerMemoryPoolInfo::~ServerMemoryPoolInfo() = default;
bool ServerMemoryPoolInfo::Update(const ServerMemoryPoolInfo::InParams& in_params,
ServerMemoryPoolInfo::OutParams& out_params) {
// Our state does not need to be changed
if (in_params.state != ServerMemoryPoolInfo::State::RequestAttach &&
in_params.state != ServerMemoryPoolInfo::State::RequestDetach) {
return true;
}
// Address or size is null
if (in_params.address == 0 || in_params.size == 0) {
LOG_ERROR(Audio, "Memory pool address or size is zero! address={:X}, size={:X}",
in_params.address, in_params.size);
return false;
}
// Address or size is not aligned
if ((in_params.address % 0x1000) != 0 || (in_params.size % 0x1000) != 0) {
LOG_ERROR(Audio, "Memory pool address or size is not aligned! address={:X}, size={:X}",
in_params.address, in_params.size);
return false;
}
if (in_params.state == ServerMemoryPoolInfo::State::RequestAttach) {
cpu_address = in_params.address;
size = in_params.size;
used = true;
out_params.state = ServerMemoryPoolInfo::State::Attached;
} else {
// Unexpected address
if (cpu_address != in_params.address) {
LOG_ERROR(Audio, "Memory pool address differs! Expecting {:X} but address is {:X}",
cpu_address, in_params.address);
return false;
}
if (size != in_params.size) {
LOG_ERROR(Audio, "Memory pool size differs! Expecting {:X} but size is {:X}", size,
in_params.size);
return false;
}
cpu_address = 0;
size = 0;
used = false;
out_params.state = ServerMemoryPoolInfo::State::Detached;
}
return true;
}
} // namespace AudioCore

View File

@ -0,0 +1,53 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/swap.h"
namespace AudioCore {
class ServerMemoryPoolInfo {
public:
ServerMemoryPoolInfo();
~ServerMemoryPoolInfo();
enum class State : u32_le {
Invalid = 0x0,
Aquired = 0x1,
RequestDetach = 0x2,
Detached = 0x3,
RequestAttach = 0x4,
Attached = 0x5,
Released = 0x6,
};
struct InParams {
u64_le address{};
u64_le size{};
ServerMemoryPoolInfo::State state{};
INSERT_PADDING_WORDS(3);
};
static_assert(sizeof(ServerMemoryPoolInfo::InParams) == 0x20, "InParams are an invalid size");
struct OutParams {
ServerMemoryPoolInfo::State state{};
INSERT_PADDING_WORDS(3);
};
static_assert(sizeof(ServerMemoryPoolInfo::OutParams) == 0x10, "OutParams are an invalid size");
bool Update(const ServerMemoryPoolInfo::InParams& in_params,
ServerMemoryPoolInfo::OutParams& out_params);
private:
// There's another entry here which is the DSP address, however since we're not talking to the
// DSP we can just use the same address provided by the guest without needing to remap
u64_le cpu_address{};
u64_le size{};
bool used{};
};
} // namespace AudioCore

View File

@ -0,0 +1,264 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "audio_core/behavior_info.h"
#include "audio_core/common.h"
#include "audio_core/mix_context.h"
#include "audio_core/splitter_context.h"
namespace AudioCore {
MixContext::MixContext() = default;
MixContext::~MixContext() = default;
void MixContext::Initialize(const BehaviorInfo& behavior_info, std::size_t mix_count) {
info_count = mix_count;
infos.resize(info_count);
auto& final_mix = GetInfo(AudioCommon::FINAL_MIX);
final_mix.GetInParams().mix_id = AudioCommon::FINAL_MIX;
for (auto& info : infos) {
sorted_info.push_back(&info);
}
// Only initialize our edge matrix and node states if splitters are supported
if (behavior_info.IsSplitterSupported()) {
node_states.Initialize(mix_count);
edge_matrix.Initialize(mix_count);
}
}
void MixContext::UpdateDistancesFromFinalMix() {
// Set all distances to be invalid
for (std::size_t i = 0; i < info_count; i++) {
GetInfo(i).GetInParams().final_mix_distance = AudioCommon::NO_FINAL_MIX;
}
for (std::size_t i = 0; i < info_count; i++) {
auto& info = GetInfo(i);
auto& in_params = info.GetInParams();
// Populate our sorted info
sorted_info[i] = &info;
if (!in_params.in_use) {
continue;
}
auto mix_id = in_params.mix_id;
// Needs to be referenced out of scope
s32 distance_to_final_mix{AudioCommon::FINAL_MIX};
for (; distance_to_final_mix < info_count; distance_to_final_mix++) {
if (mix_id == AudioCommon::FINAL_MIX) {
// If we're at the final mix, we're done
break;
} else if (mix_id == AudioCommon::NO_MIX) {
// If we have no more mix ids, we're done
distance_to_final_mix = AudioCommon::NO_FINAL_MIX;
break;
} else {
const auto& dest_mix = GetInfo(mix_id);
const auto dest_mix_distance = dest_mix.GetInParams().final_mix_distance;
if (dest_mix_distance == AudioCommon::NO_FINAL_MIX) {
// If our current mix isn't pointing to a final mix, follow through
mix_id = dest_mix.GetInParams().dest_mix_id;
} else {
// Our current mix + 1 = final distance
distance_to_final_mix = dest_mix_distance + 1;
break;
}
}
}
// If we're out of range for our distance, mark it as no final mix
if (distance_to_final_mix >= info_count) {
distance_to_final_mix = AudioCommon::NO_FINAL_MIX;
}
in_params.final_mix_distance = distance_to_final_mix;
}
}
void MixContext::CalcMixBufferOffset() {
s32 offset{};
for (std::size_t i = 0; i < info_count; i++) {
auto& info = GetSortedInfo(i);
auto& in_params = info.GetInParams();
if (in_params.in_use) {
// Only update if in use
in_params.buffer_offset = offset;
offset += in_params.buffer_count;
}
}
}
void MixContext::SortInfo() {
// Get the distance to the final mix
UpdateDistancesFromFinalMix();
// Sort based on the distance to the final mix
std::sort(sorted_info.begin(), sorted_info.end(),
[](const ServerMixInfo* lhs, const ServerMixInfo* rhs) {
return lhs->GetInParams().final_mix_distance >
rhs->GetInParams().final_mix_distance;
});
// Calculate the mix buffer offset
CalcMixBufferOffset();
}
bool MixContext::TsortInfo(SplitterContext& splitter_context) {
// If we're not using mixes, just calculate the mix buffer offset
if (!splitter_context.UsingSplitter()) {
CalcMixBufferOffset();
return true;
}
// Sort our node states
if (!node_states.Tsort(edge_matrix)) {
return false;
}
// Get our sorted list
const auto sorted_list = node_states.GetIndexList();
std::size_t info_id{};
for (auto itr = sorted_list.rbegin(); itr != sorted_list.rend(); ++itr) {
// Set our sorted info
sorted_info[info_id++] = &GetInfo(*itr);
}
// Calculate the mix buffer offset
CalcMixBufferOffset();
return true;
}
std::size_t MixContext::GetCount() const {
return info_count;
}
ServerMixInfo& MixContext::GetInfo(std::size_t i) {
ASSERT(i < info_count);
return infos.at(i);
}
const ServerMixInfo& MixContext::GetInfo(std::size_t i) const {
ASSERT(i < info_count);
return infos.at(i);
}
ServerMixInfo& MixContext::GetSortedInfo(std::size_t i) {
ASSERT(i < info_count);
return *sorted_info.at(i);
}
const ServerMixInfo& MixContext::GetSortedInfo(std::size_t i) const {
ASSERT(i < info_count);
return *sorted_info.at(i);
}
ServerMixInfo& MixContext::GetFinalMixInfo() {
return infos.at(AudioCommon::FINAL_MIX);
}
const ServerMixInfo& MixContext::GetFinalMixInfo() const {
return infos.at(AudioCommon::FINAL_MIX);
}
EdgeMatrix& MixContext::GetEdgeMatrix() {
return edge_matrix;
}
const EdgeMatrix& MixContext::GetEdgeMatrix() const {
return edge_matrix;
}
ServerMixInfo::ServerMixInfo() {
Cleanup();
}
ServerMixInfo::~ServerMixInfo() = default;
const ServerMixInfo::InParams& ServerMixInfo::GetInParams() const {
return in_params;
}
ServerMixInfo::InParams& ServerMixInfo::GetInParams() {
return in_params;
}
bool ServerMixInfo::Update(EdgeMatrix& edge_matrix, const MixInfo::InParams& mix_in,
BehaviorInfo& behavior_info, SplitterContext& splitter_context) {
in_params.volume = mix_in.volume;
in_params.sample_rate = mix_in.sample_rate;
in_params.buffer_count = mix_in.buffer_count;
in_params.in_use = mix_in.in_use;
in_params.mix_id = mix_in.mix_id;
in_params.node_id = mix_in.node_id;
for (std::size_t i = 0; i < mix_in.mix_volume.size(); i++) {
std::copy(mix_in.mix_volume[i].begin(), mix_in.mix_volume[i].end(),
in_params.mix_volume[i].begin());
}
bool require_sort = false;
if (behavior_info.IsSplitterSupported()) {
require_sort = UpdateConnection(edge_matrix, mix_in, splitter_context);
} else {
in_params.dest_mix_id = mix_in.dest_mix_id;
in_params.splitter_id = AudioCommon::NO_SPLITTER;
}
// TODO(ogniK): Update effect processing order
return require_sort;
}
bool ServerMixInfo::HasAnyConnection() const {
return in_params.splitter_id != AudioCommon::NO_SPLITTER ||
in_params.mix_id != AudioCommon::NO_MIX;
}
void ServerMixInfo::Cleanup() {
in_params.volume = 0.0f;
in_params.sample_rate = 0;
in_params.buffer_count = 0;
in_params.in_use = false;
in_params.mix_id = AudioCommon::NO_MIX;
in_params.node_id = 0;
in_params.buffer_offset = 0;
in_params.dest_mix_id = AudioCommon::NO_MIX;
in_params.splitter_id = AudioCommon::NO_SPLITTER;
std::memset(in_params.mix_volume.data(), 0, sizeof(float) * in_params.mix_volume.size());
}
bool ServerMixInfo::UpdateConnection(EdgeMatrix& edge_matrix, const MixInfo::InParams& mix_in,
SplitterContext& splitter_context) {
// Mixes are identical
if (in_params.dest_mix_id == mix_in.dest_mix_id &&
in_params.splitter_id == mix_in.splitter_id &&
((in_params.splitter_id == AudioCommon::NO_SPLITTER) ||
!splitter_context.GetInfo(in_params.splitter_id).HasNewConnection())) {
return false;
}
// Remove current edges for mix id
edge_matrix.RemoveEdges(in_params.mix_id);
if (mix_in.dest_mix_id != AudioCommon::NO_MIX) {
// If we have a valid destination mix id, set our edge matrix
edge_matrix.Connect(in_params.mix_id, mix_in.dest_mix_id);
} else if (mix_in.splitter_id != AudioCommon::NO_SPLITTER) {
// Recurse our splitter linked and set our edges
auto& splitter_info = splitter_context.GetInfo(mix_in.splitter_id);
const auto length = splitter_info.GetLength();
for (s32 i = 0; i < length; i++) {
const auto* splitter_destination =
splitter_context.GetDestinationData(mix_in.splitter_id, i);
if (splitter_destination == nullptr) {
continue;
}
if (splitter_destination->ValidMixId()) {
edge_matrix.Connect(in_params.mix_id, splitter_destination->GetMixId());
}
}
}
in_params.dest_mix_id = mix_in.dest_mix_id;
in_params.splitter_id = mix_in.splitter_id;
return true;
}
} // namespace AudioCore

View File

@ -0,0 +1,107 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include <vector>
#include "audio_core/common.h"
#include "audio_core/splitter_context.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
namespace AudioCore {
class BehaviorInfo;
class MixInfo {
public:
struct DirtyHeader {
u32_le magic{};
u32_le mixer_count{};
INSERT_PADDING_BYTES(0x18);
};
static_assert(sizeof(DirtyHeader) == 0x20, "MixInfo::DirtyHeader is an invalid size");
struct InParams {
float_le volume{};
s32_le sample_rate{};
s32_le buffer_count{};
bool in_use{};
INSERT_PADDING_BYTES(3);
s32_le mix_id{};
s32_le effect_count{};
u32_le node_id{};
INSERT_PADDING_WORDS(2);
std::array<std::array<float_le, AudioCommon::MAX_MIX_BUFFERS>, AudioCommon::MAX_MIX_BUFFERS>
mix_volume{};
s32_le dest_mix_id{};
s32_le splitter_id{};
INSERT_PADDING_WORDS(1);
};
static_assert(sizeof(MixInfo::InParams) == 0x930, "MixInfo::InParams is an invalid size");
};
class ServerMixInfo {
public:
struct InParams {
float volume{};
s32 sample_rate{};
s32 buffer_count{};
bool in_use{};
s32 mix_id{};
u32 node_id{};
std::array<std::array<float_le, AudioCommon::MAX_MIX_BUFFERS>, AudioCommon::MAX_MIX_BUFFERS>
mix_volume{};
s32 dest_mix_id{};
s32 splitter_id{};
s32 buffer_offset{};
s32 final_mix_distance{};
};
ServerMixInfo();
~ServerMixInfo();
const ServerMixInfo::InParams& GetInParams() const;
ServerMixInfo::InParams& GetInParams();
bool Update(EdgeMatrix& edge_matrix, const MixInfo::InParams& mix_in,
BehaviorInfo& behavior_info, SplitterContext& splitter_context);
bool HasAnyConnection() const;
void Cleanup();
private:
InParams in_params{};
bool UpdateConnection(EdgeMatrix& edge_matrix, const MixInfo::InParams& mix_in,
SplitterContext& splitter_context);
};
class MixContext {
public:
MixContext();
~MixContext();
void Initialize(const BehaviorInfo& behavior_info, std::size_t mix_count);
void SortInfo();
bool TsortInfo(SplitterContext& splitter_context);
std::size_t GetCount() const;
ServerMixInfo& GetInfo(std::size_t i);
const ServerMixInfo& GetInfo(std::size_t i) const;
ServerMixInfo& GetSortedInfo(std::size_t i);
const ServerMixInfo& GetSortedInfo(std::size_t i) const;
ServerMixInfo& GetFinalMixInfo();
const ServerMixInfo& GetFinalMixInfo() const;
EdgeMatrix& GetEdgeMatrix();
const EdgeMatrix& GetEdgeMatrix() const;
private:
void CalcMixBufferOffset();
void UpdateDistancesFromFinalMix();
NodeStates node_states{};
EdgeMatrix edge_matrix{};
std::size_t info_count{};
std::vector<ServerMixInfo> infos{};
std::vector<ServerMixInfo*> sorted_info{};
};
} // namespace AudioCore

View File

@ -0,0 +1,31 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "audio_core/sink_context.h"
namespace AudioCore {
SinkContext::SinkContext(std::size_t sink_count) : sink_count(sink_count) {}
SinkContext::~SinkContext() = default;
std::size_t SinkContext::GetCount() const {
return sink_count;
}
void SinkContext::UpdateMainSink(SinkInfo::InParams& in) {
in_use = in.in_use;
use_count = in.device.input_count;
std::memcpy(buffers.data(), in.device.input.data(), AudioCommon::MAX_CHANNEL_COUNT);
}
bool SinkContext::InUse() const {
return in_use;
}
std::vector<u8> SinkContext::OutputBuffers() const {
std::vector<u8> buffer_ret(use_count);
std::memcpy(buffer_ret.data(), buffers.data(), use_count);
return buffer_ret;
}
} // namespace AudioCore

View File

@ -0,0 +1,89 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include "audio_core/common.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/swap.h"
namespace AudioCore {
enum class SinkTypes : u8 {
Invalid = 0,
Device = 1,
Circular = 2,
};
enum class SinkSampleFormat : u32_le {
None = 0,
Pcm8 = 1,
Pcm16 = 2,
Pcm24 = 3,
Pcm32 = 4,
PcmFloat = 5,
Adpcm = 6,
};
class SinkInfo {
public:
struct CircularBufferIn {
u64_le address;
u32_le size;
u32_le input_count;
u32_le sample_count;
u32_le previous_position;
SinkSampleFormat sample_format;
std::array<u8, AudioCommon::MAX_CHANNEL_COUNT> input;
bool in_use;
INSERT_UNION_PADDING_BYTES(5);
};
static_assert(sizeof(SinkInfo::CircularBufferIn) == 0x28,
"SinkInfo::CircularBufferIn is in invalid size");
struct DeviceIn {
std::array<u8, 255> device_name;
INSERT_UNION_PADDING_BYTES(1);
s32_le input_count;
std::array<u8, AudioCommon::MAX_CHANNEL_COUNT> input;
INSERT_UNION_PADDING_BYTES(1);
bool down_matrix_enabled;
std::array<float_le, 4> down_matrix_coef;
};
static_assert(sizeof(SinkInfo::DeviceIn) == 0x11c, "SinkInfo::DeviceIn is an invalid size");
struct InParams {
SinkTypes type{};
bool in_use{};
INSERT_PADDING_BYTES(2);
u32_le node_id{};
INSERT_PADDING_WORDS(6);
union {
// std::array<u8, 0x120> raw{};
SinkInfo::DeviceIn device;
SinkInfo::CircularBufferIn circular_buffer;
};
};
static_assert(sizeof(SinkInfo::InParams) == 0x140, "SinkInfo::InParams are an invalid size!");
};
class SinkContext {
public:
explicit SinkContext(std::size_t sink_count);
~SinkContext();
std::size_t GetCount() const;
void UpdateMainSink(SinkInfo::InParams& in);
bool InUse() const;
std::vector<u8> OutputBuffers() const;
private:
bool in_use{false};
s32 use_count{};
std::array<u8, AudioCommon::MAX_CHANNEL_COUNT> buffers{};
std::size_t sink_count{};
};
} // namespace AudioCore

View File

@ -0,0 +1,617 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "audio_core/behavior_info.h"
#include "audio_core/splitter_context.h"
#include "common/alignment.h"
#include "common/assert.h"
#include "common/logging/log.h"
namespace AudioCore {
ServerSplitterDestinationData::ServerSplitterDestinationData(s32 id) : id(id) {}
ServerSplitterDestinationData::~ServerSplitterDestinationData() = default;
void ServerSplitterDestinationData::Update(SplitterInfo::InDestinationParams& header) {
// Log error as these are not actually failure states
if (header.magic != SplitterMagic::DataHeader) {
LOG_ERROR(Audio, "Splitter destination header is invalid!");
return;
}
// Incorrect splitter id
if (header.splitter_id != id) {
LOG_ERROR(Audio, "Splitter destination ids do not match!");
return;
}
mix_id = header.mix_id;
// Copy our mix volumes
std::copy(header.mix_volumes.begin(), header.mix_volumes.end(), current_mix_volumes.begin());
if (!in_use && header.in_use) {
// Update mix volumes
std::copy(current_mix_volumes.begin(), current_mix_volumes.end(), last_mix_volumes.begin());
needs_update = false;
}
in_use = header.in_use;
}
ServerSplitterDestinationData* ServerSplitterDestinationData::GetNextDestination() {
return next;
}
const ServerSplitterDestinationData* ServerSplitterDestinationData::GetNextDestination() const {
return next;
}
void ServerSplitterDestinationData::SetNextDestination(ServerSplitterDestinationData* dest) {
next = dest;
}
bool ServerSplitterDestinationData::ValidMixId() const {
return GetMixId() != AudioCommon::NO_MIX;
}
s32 ServerSplitterDestinationData::GetMixId() const {
return mix_id;
}
bool ServerSplitterDestinationData::IsConfigured() const {
return in_use && ValidMixId();
}
float ServerSplitterDestinationData::GetMixVolume(std::size_t i) const {
ASSERT(i < AudioCommon::MAX_MIX_BUFFERS);
return current_mix_volumes.at(i);
}
const std::array<float, AudioCommon::MAX_MIX_BUFFERS>&
ServerSplitterDestinationData::CurrentMixVolumes() const {
return current_mix_volumes;
}
const std::array<float, AudioCommon::MAX_MIX_BUFFERS>&
ServerSplitterDestinationData::LastMixVolumes() const {
return last_mix_volumes;
}
void ServerSplitterDestinationData::MarkDirty() {
needs_update = true;
}
void ServerSplitterDestinationData::UpdateInternalState() {
if (in_use && needs_update) {
std::copy(current_mix_volumes.begin(), current_mix_volumes.end(), last_mix_volumes.begin());
}
needs_update = false;
}
ServerSplitterInfo::ServerSplitterInfo(s32 id) : id(id) {}
ServerSplitterInfo::~ServerSplitterInfo() = default;
void ServerSplitterInfo::InitializeInfos() {
send_length = 0;
head = nullptr;
new_connection = true;
}
void ServerSplitterInfo::ClearNewConnectionFlag() {
new_connection = false;
}
std::size_t ServerSplitterInfo::Update(SplitterInfo::InInfoPrams& header) {
if (header.send_id != id) {
return 0;
}
sample_rate = header.sample_rate;
new_connection = true;
// We need to update the size here due to the splitter bug being present and providing an
// incorrect size. We're suppose to also update the header here but we just ignore and continue
return (sizeof(s32_le) * (header.length - 1)) + (sizeof(s32_le) * 3);
}
ServerSplitterDestinationData* ServerSplitterInfo::GetHead() {
return head;
}
const ServerSplitterDestinationData* ServerSplitterInfo::GetHead() const {
return head;
}
ServerSplitterDestinationData* ServerSplitterInfo::GetData(std::size_t depth) {
auto current_head = head;
for (std::size_t i = 0; i < depth; i++) {
if (current_head == nullptr) {
return nullptr;
}
current_head = current_head->GetNextDestination();
}
return current_head;
}
const ServerSplitterDestinationData* ServerSplitterInfo::GetData(std::size_t depth) const {
auto current_head = head;
for (std::size_t i = 0; i < depth; i++) {
if (current_head == nullptr) {
return nullptr;
}
current_head = current_head->GetNextDestination();
}
return current_head;
}
bool ServerSplitterInfo::HasNewConnection() const {
return new_connection;
}
s32 ServerSplitterInfo::GetLength() const {
return send_length;
}
void ServerSplitterInfo::SetHead(ServerSplitterDestinationData* new_head) {
head = new_head;
}
void ServerSplitterInfo::SetHeadDepth(s32 length) {
send_length = length;
}
SplitterContext::SplitterContext() = default;
SplitterContext::~SplitterContext() = default;
void SplitterContext::Initialize(BehaviorInfo& behavior_info, std::size_t _info_count,
std::size_t _data_count) {
if (!behavior_info.IsSplitterSupported() || _data_count == 0 || _info_count == 0) {
Setup(0, 0, false);
return;
}
// Only initialize if we're using splitters
Setup(_info_count, _data_count, behavior_info.IsSplitterBugFixed());
}
bool SplitterContext::Update(const std::vector<u8>& input, std::size_t& input_offset,
std::size_t& bytes_read) {
auto UpdateOffsets = [&](std::size_t read) {
input_offset += read;
bytes_read += read;
};
if (info_count == 0 || data_count == 0) {
bytes_read = 0;
return true;
}
if (!AudioCommon::CanConsumeBuffer(input.size(), input_offset,
sizeof(SplitterInfo::InHeader))) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
SplitterInfo::InHeader header{};
std::memcpy(&header, input.data() + input_offset, sizeof(SplitterInfo::InHeader));
UpdateOffsets(sizeof(SplitterInfo::InHeader));
if (header.magic != SplitterMagic::SplitterHeader) {
LOG_ERROR(Audio, "Invalid header magic! Expecting {:X} but got {:X}",
SplitterMagic::SplitterHeader, header.magic);
return false;
}
// Clear all connections
for (auto& info : infos) {
info.ClearNewConnectionFlag();
}
UpdateInfo(input, input_offset, bytes_read, header.info_count);
UpdateData(input, input_offset, bytes_read, header.data_count);
const auto aligned_bytes_read = Common::AlignUp(bytes_read, 16);
input_offset += aligned_bytes_read - bytes_read;
bytes_read = aligned_bytes_read;
return true;
}
bool SplitterContext::UsingSplitter() const {
return info_count > 0 && data_count > 0;
}
ServerSplitterInfo& SplitterContext::GetInfo(std::size_t i) {
ASSERT(i < info_count);
return infos.at(i);
}
const ServerSplitterInfo& SplitterContext::GetInfo(std::size_t i) const {
ASSERT(i < info_count);
return infos.at(i);
}
ServerSplitterDestinationData& SplitterContext::GetData(std::size_t i) {
ASSERT(i < data_count);
return datas.at(i);
}
const ServerSplitterDestinationData& SplitterContext::GetData(std::size_t i) const {
ASSERT(i < data_count);
return datas.at(i);
}
ServerSplitterDestinationData* SplitterContext::GetDestinationData(std::size_t info,
std::size_t data) {
ASSERT(info < info_count);
auto& cur_info = GetInfo(info);
return cur_info.GetData(data);
}
const ServerSplitterDestinationData* SplitterContext::GetDestinationData(std::size_t info,
std::size_t data) const {
ASSERT(info < info_count);
auto& cur_info = GetInfo(info);
return cur_info.GetData(data);
}
void SplitterContext::UpdateInternalState() {
if (data_count == 0) {
return;
}
for (auto& data : datas) {
data.UpdateInternalState();
}
}
std::size_t SplitterContext::GetInfoCount() const {
return info_count;
}
std::size_t SplitterContext::GetDataCount() const {
return data_count;
}
void SplitterContext::Setup(std::size_t _info_count, std::size_t _data_count,
bool is_splitter_bug_fixed) {
info_count = _info_count;
data_count = _data_count;
for (std::size_t i = 0; i < info_count; i++) {
auto& splitter = infos.emplace_back(static_cast<s32>(i));
splitter.InitializeInfos();
}
for (std::size_t i = 0; i < data_count; i++) {
datas.emplace_back(static_cast<s32>(i));
}
bug_fixed = is_splitter_bug_fixed;
}
bool SplitterContext::UpdateInfo(const std::vector<u8>& input, std::size_t& input_offset,
std::size_t& bytes_read, s32 in_splitter_count) {
auto UpdateOffsets = [&](std::size_t read) {
input_offset += read;
bytes_read += read;
};
for (s32 i = 0; i < in_splitter_count; i++) {
if (!AudioCommon::CanConsumeBuffer(input.size(), input_offset,
sizeof(SplitterInfo::InInfoPrams))) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
SplitterInfo::InInfoPrams header{};
std::memcpy(&header, input.data() + input_offset, sizeof(SplitterInfo::InInfoPrams));
// Logged as warning as these don't actually cause a bailout for some reason
if (header.magic != SplitterMagic::InfoHeader) {
LOG_ERROR(Audio, "Bad splitter data header");
break;
}
if (header.send_id < 0 || header.send_id > info_count) {
LOG_ERROR(Audio, "Bad splitter data id");
break;
}
UpdateOffsets(sizeof(SplitterInfo::InInfoPrams));
auto& info = GetInfo(header.send_id);
if (!RecomposeDestination(info, header, input, input_offset)) {
LOG_ERROR(Audio, "Failed to recompose destination for splitter!");
return false;
}
const std::size_t read = info.Update(header);
bytes_read += read;
input_offset += read;
}
return true;
}
bool SplitterContext::UpdateData(const std::vector<u8>& input, std::size_t& input_offset,
std::size_t& bytes_read, s32 in_data_count) {
auto UpdateOffsets = [&](std::size_t read) {
input_offset += read;
bytes_read += read;
};
for (s32 i = 0; i < in_data_count; i++) {
if (!AudioCommon::CanConsumeBuffer(input.size(), input_offset,
sizeof(SplitterInfo::InDestinationParams))) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
SplitterInfo::InDestinationParams header{};
std::memcpy(&header, input.data() + input_offset,
sizeof(SplitterInfo::InDestinationParams));
UpdateOffsets(sizeof(SplitterInfo::InDestinationParams));
// Logged as warning as these don't actually cause a bailout for some reason
if (header.magic != SplitterMagic::DataHeader) {
LOG_ERROR(Audio, "Bad splitter data header");
break;
}
if (header.splitter_id < 0 || header.splitter_id > data_count) {
LOG_ERROR(Audio, "Bad splitter data id");
break;
}
GetData(header.splitter_id).Update(header);
}
return true;
}
bool SplitterContext::RecomposeDestination(ServerSplitterInfo& info,
SplitterInfo::InInfoPrams& header,
const std::vector<u8>& input,
const std::size_t& input_offset) {
// Clear our current destinations
auto* current_head = info.GetHead();
while (current_head != nullptr) {
auto next_head = current_head->GetNextDestination();
current_head->SetNextDestination(nullptr);
current_head = next_head;
}
info.SetHead(nullptr);
s32 size = header.length;
// If the splitter bug is present, calculate fixed size
if (!bug_fixed) {
if (info_count > 0) {
const auto factor = data_count / info_count;
size = std::min(header.length, static_cast<s32>(factor));
} else {
size = 0;
}
}
if (size < 1) {
LOG_ERROR(Audio, "Invalid splitter info size! size={:X}", size);
return true;
}
auto* start_head = &GetData(header.resource_id_base);
current_head = start_head;
std::vector<s32_le> resource_ids(size - 1);
if (!AudioCommon::CanConsumeBuffer(input.size(), input_offset,
resource_ids.size() * sizeof(s32_le))) {
LOG_ERROR(Audio, "Buffer is an invalid size!");
return false;
}
std::memcpy(resource_ids.data(), input.data() + input_offset,
resource_ids.size() * sizeof(s32_le));
for (auto resource_id : resource_ids) {
auto* head = &GetData(resource_id);
current_head->SetNextDestination(head);
current_head = head;
}
info.SetHead(start_head);
info.SetHeadDepth(size);
return true;
}
NodeStates::NodeStates() = default;
NodeStates::~NodeStates() = default;
void NodeStates::Initialize(std::size_t _node_count) {
// Setup our work parameters
node_count = _node_count;
was_node_found.resize(node_count);
was_node_completed.resize(node_count);
index_list.resize(node_count);
index_stack.Reset(node_count * node_count);
}
bool NodeStates::Tsort(EdgeMatrix& edge_matrix) {
return DepthFirstSearch(edge_matrix);
}
std::size_t NodeStates::GetIndexPos() const {
return index_pos;
}
const std::vector<s32>& NodeStates::GetIndexList() const {
return index_list;
}
void NodeStates::PushTsortResult(s32 index) {
ASSERT(index < node_count);
index_list[index_pos++] = index;
}
bool NodeStates::DepthFirstSearch(EdgeMatrix& edge_matrix) {
ResetState();
for (std::size_t i = 0; i < node_count; i++) {
const auto node_id = static_cast<s32>(i);
// If we don't have a state, send to our index stack for work
if (GetState(i) == NodeStates::State::NoState) {
index_stack.push(node_id);
}
// While we have work to do in our stack
while (index_stack.Count() > 0) {
// Get the current node
const auto current_stack_index = index_stack.top();
// Check if we've seen the node yet
const auto index_state = GetState(current_stack_index);
if (index_state == NodeStates::State::NoState) {
// Mark the node as seen
UpdateState(NodeStates::State::InFound, current_stack_index);
} else if (index_state == NodeStates::State::InFound) {
// We've seen this node before, mark it as completed
UpdateState(NodeStates::State::InCompleted, current_stack_index);
// Update our index list
PushTsortResult(current_stack_index);
// Pop the stack
index_stack.pop();
continue;
} else if (index_state == NodeStates::State::InCompleted) {
// If our node is already sorted, clear it
index_stack.pop();
continue;
}
const auto node_count = edge_matrix.GetNodeCount();
for (s32 j = 0; j < static_cast<s32>(node_count); j++) {
// Check if our node is connected to our edge matrix
if (!edge_matrix.Connected(current_stack_index, j)) {
continue;
}
// Check if our node exists
const auto node_state = GetState(j);
if (node_state == NodeStates::State::NoState) {
// Add more work
index_stack.push(j);
} else if (node_state == NodeStates::State::InFound) {
UNREACHABLE_MSG("Node start marked as found");
ResetState();
return false;
}
}
}
}
return true;
}
void NodeStates::ResetState() {
// Reset to the start of our index stack
index_pos = 0;
for (std::size_t i = 0; i < node_count; i++) {
// Mark all nodes as not found
was_node_found[i] = false;
// Mark all nodes as uncompleted
was_node_completed[i] = false;
// Mark all indexes as invalid
index_list[i] = -1;
}
}
void NodeStates::UpdateState(NodeStates::State state, std::size_t i) {
switch (state) {
case NodeStates::State::NoState:
was_node_found[i] = false;
was_node_completed[i] = false;
break;
case NodeStates::State::InFound:
was_node_found[i] = true;
was_node_completed[i] = false;
break;
case NodeStates::State::InCompleted:
was_node_found[i] = false;
was_node_completed[i] = true;
break;
}
}
NodeStates::State NodeStates::GetState(std::size_t i) {
ASSERT(i < node_count);
if (was_node_found[i]) {
// If our node exists in our found list
return NodeStates::State::InFound;
} else if (was_node_completed[i]) {
// If node is in the completed list
return NodeStates::State::InCompleted;
} else {
// If in neither
return NodeStates::State::NoState;
}
}
NodeStates::Stack::Stack() = default;
NodeStates::Stack::~Stack() = default;
void NodeStates::Stack::Reset(std::size_t size) {
// Mark our stack as empty
stack.resize(size);
stack_size = size;
stack_pos = 0;
std::fill(stack.begin(), stack.end(), 0);
}
void NodeStates::Stack::push(s32 val) {
ASSERT(stack_pos < stack_size);
stack[stack_pos++] = val;
}
std::size_t NodeStates::Stack::Count() const {
return stack_pos;
}
s32 NodeStates::Stack::top() const {
ASSERT(stack_pos > 0);
return stack[stack_pos - 1];
}
s32 NodeStates::Stack::pop() {
ASSERT(stack_pos > 0);
stack_pos--;
return stack[stack_pos];
}
EdgeMatrix::EdgeMatrix() = default;
EdgeMatrix::~EdgeMatrix() = default;
void EdgeMatrix::Initialize(std::size_t _node_count) {
node_count = _node_count;
edge_matrix.resize(node_count * node_count);
}
bool EdgeMatrix::Connected(s32 a, s32 b) {
return GetState(a, b);
}
void EdgeMatrix::Connect(s32 a, s32 b) {
SetState(a, b, true);
}
void EdgeMatrix::Disconnect(s32 a, s32 b) {
SetState(a, b, false);
}
void EdgeMatrix::RemoveEdges(s32 edge) {
for (std::size_t i = 0; i < node_count; i++) {
SetState(edge, static_cast<s32>(i), false);
}
}
std::size_t EdgeMatrix::GetNodeCount() const {
return node_count;
}
void EdgeMatrix::SetState(s32 a, s32 b, bool state) {
ASSERT(InRange(a, b));
edge_matrix.at(a * node_count + b) = state;
}
bool EdgeMatrix::GetState(s32 a, s32 b) {
ASSERT(InRange(a, b));
return edge_matrix.at(a * node_count + b);
}
bool EdgeMatrix::InRange(s32 a, s32 b) const {
const std::size_t pos = a * node_count + b;
return pos < (node_count * node_count);
}
} // namespace AudioCore

View File

@ -0,0 +1,221 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <stack>
#include <vector>
#include "audio_core/common.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
#include "common/swap.h"
namespace AudioCore {
class BehaviorInfo;
class EdgeMatrix {
public:
EdgeMatrix();
~EdgeMatrix();
void Initialize(std::size_t _node_count);
bool Connected(s32 a, s32 b);
void Connect(s32 a, s32 b);
void Disconnect(s32 a, s32 b);
void RemoveEdges(s32 edge);
std::size_t GetNodeCount() const;
private:
void SetState(s32 a, s32 b, bool state);
bool GetState(s32 a, s32 b);
bool InRange(s32 a, s32 b) const;
std::vector<bool> edge_matrix{};
std::size_t node_count{};
};
class NodeStates {
public:
enum class State {
NoState = 0,
InFound = 1,
InCompleted = 2,
};
// Looks to be a fixed size stack. Placed within the NodeStates class based on symbols
class Stack {
public:
Stack();
~Stack();
void Reset(std::size_t size);
void push(s32 val);
std::size_t Count() const;
s32 top() const;
s32 pop();
private:
std::vector<s32> stack{};
std::size_t stack_size{};
std::size_t stack_pos{};
};
NodeStates();
~NodeStates();
void Initialize(std::size_t _node_count);
bool Tsort(EdgeMatrix& edge_matrix);
std::size_t GetIndexPos() const;
const std::vector<s32>& GetIndexList() const;
private:
void PushTsortResult(s32 index);
bool DepthFirstSearch(EdgeMatrix& edge_matrix);
void ResetState();
void UpdateState(NodeStates::State state, std::size_t i);
NodeStates::State GetState(std::size_t i);
std::size_t node_count{};
std::vector<bool> was_node_found{};
std::vector<bool> was_node_completed{};
std::size_t index_pos{};
std::vector<s32> index_list{};
NodeStates::Stack index_stack{};
};
enum class SplitterMagic : u32_le {
SplitterHeader = Common::MakeMagic('S', 'N', 'D', 'H'),
DataHeader = Common::MakeMagic('S', 'N', 'D', 'D'),
InfoHeader = Common::MakeMagic('S', 'N', 'D', 'I'),
};
class SplitterInfo {
public:
struct InHeader {
SplitterMagic magic{};
s32_le info_count{};
s32_le data_count{};
INSERT_PADDING_WORDS(5);
};
static_assert(sizeof(SplitterInfo::InHeader) == 0x20,
"SplitterInfo::InHeader is an invalid size");
struct InInfoPrams {
SplitterMagic magic{};
s32_le send_id{};
s32_le sample_rate{};
s32_le length{};
s32_le resource_id_base{};
};
static_assert(sizeof(SplitterInfo::InInfoPrams) == 0x14,
"SplitterInfo::InInfoPrams is an invalid size");
struct InDestinationParams {
SplitterMagic magic{};
s32_le splitter_id{};
std::array<float_le, AudioCommon::MAX_MIX_BUFFERS> mix_volumes{};
s32_le mix_id{};
bool in_use{};
INSERT_PADDING_BYTES(3);
};
static_assert(sizeof(SplitterInfo::InDestinationParams) == 0x70,
"SplitterInfo::InDestinationParams is an invalid size");
};
class ServerSplitterDestinationData {
public:
explicit ServerSplitterDestinationData(s32 id);
~ServerSplitterDestinationData();
void Update(SplitterInfo::InDestinationParams& header);
ServerSplitterDestinationData* GetNextDestination();
const ServerSplitterDestinationData* GetNextDestination() const;
void SetNextDestination(ServerSplitterDestinationData* dest);
bool ValidMixId() const;
s32 GetMixId() const;
bool IsConfigured() const;
float GetMixVolume(std::size_t i) const;
const std::array<float, AudioCommon::MAX_MIX_BUFFERS>& CurrentMixVolumes() const;
const std::array<float, AudioCommon::MAX_MIX_BUFFERS>& LastMixVolumes() const;
void MarkDirty();
void UpdateInternalState();
private:
bool needs_update{};
bool in_use{};
s32 id{};
s32 mix_id{};
std::array<float, AudioCommon::MAX_MIX_BUFFERS> current_mix_volumes{};
std::array<float, AudioCommon::MAX_MIX_BUFFERS> last_mix_volumes{};
ServerSplitterDestinationData* next = nullptr;
};
class ServerSplitterInfo {
public:
explicit ServerSplitterInfo(s32 id);
~ServerSplitterInfo();
void InitializeInfos();
void ClearNewConnectionFlag();
std::size_t Update(SplitterInfo::InInfoPrams& header);
ServerSplitterDestinationData* GetHead();
const ServerSplitterDestinationData* GetHead() const;
ServerSplitterDestinationData* GetData(std::size_t depth);
const ServerSplitterDestinationData* GetData(std::size_t depth) const;
bool HasNewConnection() const;
s32 GetLength() const;
void SetHead(ServerSplitterDestinationData* new_head);
void SetHeadDepth(s32 length);
private:
s32 sample_rate{};
s32 id{};
s32 send_length{};
ServerSplitterDestinationData* head = nullptr;
bool new_connection{};
};
class SplitterContext {
public:
SplitterContext();
~SplitterContext();
void Initialize(BehaviorInfo& behavior_info, std::size_t splitter_count,
std::size_t data_count);
bool Update(const std::vector<u8>& input, std::size_t& input_offset, std::size_t& bytes_read);
bool UsingSplitter() const;
ServerSplitterInfo& GetInfo(std::size_t i);
const ServerSplitterInfo& GetInfo(std::size_t i) const;
ServerSplitterDestinationData& GetData(std::size_t i);
const ServerSplitterDestinationData& GetData(std::size_t i) const;
ServerSplitterDestinationData* GetDestinationData(std::size_t info, std::size_t data);
const ServerSplitterDestinationData* GetDestinationData(std::size_t info,
std::size_t data) const;
void UpdateInternalState();
std::size_t GetInfoCount() const;
std::size_t GetDataCount() const;
private:
void Setup(std::size_t info_count, std::size_t data_count, bool is_splitter_bug_fixed);
bool UpdateInfo(const std::vector<u8>& input, std::size_t& input_offset,
std::size_t& bytes_read, s32 in_splitter_count);
bool UpdateData(const std::vector<u8>& input, std::size_t& input_offset,
std::size_t& bytes_read, s32 in_data_count);
bool RecomposeDestination(ServerSplitterInfo& info, SplitterInfo::InInfoPrams& header,
const std::vector<u8>& input, const std::size_t& input_offset);
std::vector<ServerSplitterInfo> infos{};
std::vector<ServerSplitterDestinationData> datas{};
std::size_t info_count{};
std::size_t data_count{};
bool bug_fixed{};
};
} // namespace AudioCore

View File

@ -0,0 +1,531 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "audio_core/behavior_info.h"
#include "audio_core/voice_context.h"
#include "core/memory.h"
namespace AudioCore {
ServerVoiceChannelResource::ServerVoiceChannelResource(s32 id) : id(id) {}
ServerVoiceChannelResource::~ServerVoiceChannelResource() = default;
bool ServerVoiceChannelResource::InUse() const {
return in_use;
}
float ServerVoiceChannelResource::GetCurrentMixVolumeAt(std::size_t i) const {
ASSERT(i < AudioCommon::MAX_MIX_BUFFERS);
return mix_volume.at(i);
}
float ServerVoiceChannelResource::GetLastMixVolumeAt(std::size_t i) const {
ASSERT(i < AudioCommon::MAX_MIX_BUFFERS);
return last_mix_volume.at(i);
}
void ServerVoiceChannelResource::Update(VoiceChannelResource::InParams& in_params) {
in_use = in_params.in_use;
// Update our mix volumes only if it's in use
if (in_params.in_use) {
std::copy(in_params.mix_volume.begin(), in_params.mix_volume.end(), mix_volume.begin());
}
}
void ServerVoiceChannelResource::UpdateLastMixVolumes() {
std::copy(mix_volume.begin(), mix_volume.end(), last_mix_volume.begin());
}
const std::array<float, AudioCommon::MAX_MIX_BUFFERS>&
ServerVoiceChannelResource::GetCurrentMixVolume() const {
return mix_volume;
}
const std::array<float, AudioCommon::MAX_MIX_BUFFERS>&
ServerVoiceChannelResource::GetLastMixVolume() const {
return last_mix_volume;
}
ServerVoiceInfo::ServerVoiceInfo() {
Initialize();
}
ServerVoiceInfo::~ServerVoiceInfo() = default;
void ServerVoiceInfo::Initialize() {
in_params.in_use = false;
in_params.node_id = 0;
in_params.id = 0;
in_params.current_playstate = ServerPlayState::Stop;
in_params.priority = 255;
in_params.sample_rate = 0;
in_params.sample_format = SampleFormat::Invalid;
in_params.channel_count = 0;
in_params.pitch = 0.0f;
in_params.volume = 0.0f;
in_params.last_volume = 0.0f;
std::memset(in_params.biquad_filter.data(), 0,
sizeof(BiquadFilterParameter) * in_params.biquad_filter.size());
in_params.wave_buffer_count = 0;
in_params.wave_bufffer_head = 0;
in_params.mix_id = AudioCommon::NO_MIX;
in_params.splitter_info_id = AudioCommon::NO_SPLITTER;
in_params.additional_params_address = 0;
in_params.additional_params_size = 0;
in_params.is_new = false;
out_params.played_sample_count = 0;
out_params.wave_buffer_consumed = 0;
in_params.voice_drop_flag = false;
in_params.buffer_mapped = false;
in_params.wave_buffer_flush_request_count = 0;
std::fill(in_params.was_biquad_filter_enabled.begin(),
in_params.was_biquad_filter_enabled.end(), false);
for (auto& wave_buffer : in_params.wave_buffer) {
wave_buffer.start_sample_offset = 0;
wave_buffer.end_sample_offset = 0;
wave_buffer.is_looping = false;
wave_buffer.end_of_stream = false;
wave_buffer.buffer_address = 0;
wave_buffer.buffer_size = 0;
wave_buffer.context_address = 0;
wave_buffer.context_size = 0;
wave_buffer.sent_to_dsp = true;
}
stored_samples.clear();
}
void ServerVoiceInfo::UpdateParameters(const VoiceInfo::InParams& voice_in,
BehaviorInfo& behavior_info) {
in_params.in_use = voice_in.is_in_use;
in_params.id = voice_in.id;
in_params.node_id = voice_in.node_id;
in_params.last_playstate = in_params.current_playstate;
switch (voice_in.play_state) {
case PlayState::Paused:
in_params.current_playstate = ServerPlayState::Paused;
break;
case PlayState::Stopped:
if (in_params.current_playstate != ServerPlayState::Stop) {
in_params.current_playstate = ServerPlayState::RequestStop;
}
break;
case PlayState::Started:
in_params.current_playstate = ServerPlayState::Play;
break;
default:
UNREACHABLE_MSG("Unknown playstate {}", voice_in.play_state);
break;
}
in_params.priority = voice_in.priority;
in_params.sorting_order = voice_in.sorting_order;
in_params.sample_rate = voice_in.sample_rate;
in_params.sample_format = voice_in.sample_format;
in_params.channel_count = voice_in.channel_count;
in_params.pitch = voice_in.pitch;
in_params.volume = voice_in.volume;
std::memcpy(in_params.biquad_filter.data(), voice_in.biquad_filter.data(),
sizeof(BiquadFilterParameter) * voice_in.biquad_filter.size());
in_params.wave_buffer_count = voice_in.wave_buffer_count;
in_params.wave_bufffer_head = voice_in.wave_buffer_head;
if (behavior_info.IsFlushVoiceWaveBuffersSupported()) {
in_params.wave_buffer_flush_request_count += voice_in.wave_buffer_flush_request_count;
}
in_params.mix_id = voice_in.mix_id;
if (behavior_info.IsSplitterSupported()) {
in_params.splitter_info_id = voice_in.splitter_info_id;
} else {
in_params.splitter_info_id = AudioCommon::NO_SPLITTER;
}
std::memcpy(in_params.voice_channel_resource_id.data(),
voice_in.voice_channel_resource_ids.data(),
sizeof(s32) * in_params.voice_channel_resource_id.size());
if (behavior_info.IsVoicePlayedSampleCountResetAtLoopPointSupported()) {
in_params.behavior_flags.is_played_samples_reset_at_loop_point =
voice_in.behavior_flags.is_played_samples_reset_at_loop_point;
} else {
in_params.behavior_flags.is_played_samples_reset_at_loop_point.Assign(0);
}
if (behavior_info.IsVoicePitchAndSrcSkippedSupported()) {
in_params.behavior_flags.is_pitch_and_src_skipped =
voice_in.behavior_flags.is_pitch_and_src_skipped;
} else {
in_params.behavior_flags.is_pitch_and_src_skipped.Assign(0);
}
if (voice_in.is_voice_drop_flag_clear_requested) {
in_params.voice_drop_flag = false;
}
if (in_params.additional_params_address != voice_in.additional_params_address ||
in_params.additional_params_size != voice_in.additional_params_size) {
in_params.additional_params_address = voice_in.additional_params_address;
in_params.additional_params_size = voice_in.additional_params_size;
// TODO(ogniK): Reattach buffer, do we actually need to? Maybe just signal to the DSP that
// our context is new
}
}
void ServerVoiceInfo::UpdateWaveBuffers(
const VoiceInfo::InParams& voice_in,
std::array<VoiceState*, AudioCommon::MAX_CHANNEL_COUNT>& voice_states,
BehaviorInfo& behavior_info) {
if (voice_in.is_new) {
// Initialize our wave buffers
for (auto& wave_buffer : in_params.wave_buffer) {
wave_buffer.start_sample_offset = 0;
wave_buffer.end_sample_offset = 0;
wave_buffer.is_looping = false;
wave_buffer.end_of_stream = false;
wave_buffer.buffer_address = 0;
wave_buffer.buffer_size = 0;
wave_buffer.context_address = 0;
wave_buffer.context_size = 0;
wave_buffer.sent_to_dsp = true;
}
// Mark all our wave buffers as invalid
for (std::size_t channel = 0; channel < static_cast<std::size_t>(in_params.channel_count);
channel++) {
for (auto& is_valid : voice_states[channel]->is_wave_buffer_valid) {
is_valid = false;
}
}
}
// Update our wave buffers
for (std::size_t i = 0; i < AudioCommon::MAX_WAVE_BUFFERS; i++) {
// Assume that we have at least 1 channel voice state
const auto have_valid_wave_buffer = voice_states[0]->is_wave_buffer_valid[i];
UpdateWaveBuffer(in_params.wave_buffer[i], voice_in.wave_buffer[i], in_params.sample_format,
have_valid_wave_buffer, behavior_info);
}
}
void ServerVoiceInfo::UpdateWaveBuffer(ServerWaveBuffer& out_wavebuffer,
const WaveBuffer& in_wave_buffer, SampleFormat sample_format,
bool is_buffer_valid, BehaviorInfo& behavior_info) {
if (!is_buffer_valid && out_wavebuffer.sent_to_dsp) {
out_wavebuffer.buffer_address = 0;
out_wavebuffer.buffer_size = 0;
}
if (!in_wave_buffer.sent_to_server || !in_params.buffer_mapped) {
// Validate sample offset sizings
if (sample_format == SampleFormat::Pcm16) {
const auto buffer_size = in_wave_buffer.buffer_size;
if (in_wave_buffer.start_sample_offset < 0 || in_wave_buffer.end_sample_offset < 0 ||
(buffer_size < (sizeof(s16) * in_wave_buffer.start_sample_offset)) ||
(buffer_size < (sizeof(s16) * in_wave_buffer.end_sample_offset))) {
// TODO(ogniK): Write error info
return;
}
}
// TODO(ogniK): ADPCM Size error
out_wavebuffer.sent_to_dsp = false;
out_wavebuffer.start_sample_offset = in_wave_buffer.start_sample_offset;
out_wavebuffer.end_sample_offset = in_wave_buffer.end_sample_offset;
out_wavebuffer.is_looping = in_wave_buffer.is_looping;
out_wavebuffer.end_of_stream = in_wave_buffer.end_of_stream;
out_wavebuffer.buffer_address = in_wave_buffer.buffer_address;
out_wavebuffer.buffer_size = in_wave_buffer.buffer_size;
out_wavebuffer.context_address = in_wave_buffer.context_address;
out_wavebuffer.context_size = in_wave_buffer.context_size;
in_params.buffer_mapped =
in_wave_buffer.buffer_address != 0 && in_wave_buffer.buffer_size != 0;
// TODO(ogniK): Pool mapper attachment
// TODO(ogniK): IsAdpcmLoopContextBugFixed
}
}
void ServerVoiceInfo::WriteOutStatus(
VoiceInfo::OutParams& voice_out, VoiceInfo::InParams& voice_in,
std::array<VoiceState*, AudioCommon::MAX_CHANNEL_COUNT>& voice_states) {
if (voice_in.is_new) {
in_params.is_new = true;
voice_out.wave_buffer_consumed = 0;
voice_out.played_sample_count = 0;
voice_out.voice_dropped = false;
} else if (!in_params.is_new) {
voice_out.wave_buffer_consumed = voice_states[0]->wave_buffer_consumed;
voice_out.played_sample_count = voice_states[0]->played_sample_count;
voice_out.voice_dropped = in_params.voice_drop_flag;
} else {
voice_out.wave_buffer_consumed = 0;
voice_out.played_sample_count = 0;
voice_out.voice_dropped = false;
}
}
const ServerVoiceInfo::InParams& ServerVoiceInfo::GetInParams() const {
return in_params;
}
ServerVoiceInfo::InParams& ServerVoiceInfo::GetInParams() {
return in_params;
}
const ServerVoiceInfo::OutParams& ServerVoiceInfo::GetOutParams() const {
return out_params;
}
ServerVoiceInfo::OutParams& ServerVoiceInfo::GetOutParams() {
return out_params;
}
bool ServerVoiceInfo::ShouldSkip() const {
// TODO(ogniK): Handle unmapped wave buffers or parameters
return !in_params.in_use || (in_params.wave_buffer_count == 0) || in_params.voice_drop_flag;
}
bool ServerVoiceInfo::UpdateForCommandGeneration(VoiceContext& voice_context) {
std::array<VoiceState*, AudioCommon::MAX_CHANNEL_COUNT> dsp_voice_states{};
if (in_params.is_new) {
ResetResources(voice_context);
in_params.last_volume = in_params.volume;
in_params.is_new = false;
}
const s32 channel_count = in_params.channel_count;
for (s32 i = 0; i < channel_count; i++) {
const auto channel_resource = in_params.voice_channel_resource_id[i];
dsp_voice_states[i] =
&voice_context.GetDspSharedState(static_cast<std::size_t>(channel_resource));
}
return UpdateParametersForCommandGeneration(dsp_voice_states);
}
void ServerVoiceInfo::ResetResources(VoiceContext& voice_context) {
const s32 channel_count = in_params.channel_count;
for (s32 i = 0; i < channel_count; i++) {
const auto channel_resource = in_params.voice_channel_resource_id[i];
auto& dsp_state =
voice_context.GetDspSharedState(static_cast<std::size_t>(channel_resource));
std::memset(&dsp_state, 0, sizeof(VoiceState));
voice_context.GetChannelResource(static_cast<std::size_t>(channel_resource))
.UpdateLastMixVolumes();
}
}
bool ServerVoiceInfo::UpdateParametersForCommandGeneration(
std::array<VoiceState*, AudioCommon::MAX_CHANNEL_COUNT>& dsp_voice_states) {
const s32 channel_count = in_params.channel_count;
if (in_params.wave_buffer_flush_request_count > 0) {
FlushWaveBuffers(in_params.wave_buffer_flush_request_count, dsp_voice_states,
channel_count);
in_params.wave_buffer_flush_request_count = 0;
}
switch (in_params.current_playstate) {
case ServerPlayState::Play: {
for (std::size_t i = 0; i < AudioCommon::MAX_WAVE_BUFFERS; i++) {
if (!in_params.wave_buffer[i].sent_to_dsp) {
for (s32 channel = 0; channel < channel_count; channel++) {
dsp_voice_states[channel]->is_wave_buffer_valid[i] = true;
}
in_params.wave_buffer[i].sent_to_dsp = true;
}
}
in_params.should_depop = false;
return HasValidWaveBuffer(dsp_voice_states[0]);
}
case ServerPlayState::Paused:
case ServerPlayState::Stop: {
in_params.should_depop = in_params.last_playstate == ServerPlayState::Play;
return in_params.should_depop;
}
case ServerPlayState::RequestStop: {
for (std::size_t i = 0; i < AudioCommon::MAX_WAVE_BUFFERS; i++) {
in_params.wave_buffer[i].sent_to_dsp = true;
for (s32 channel = 0; channel < channel_count; channel++) {
auto* dsp_state = dsp_voice_states[channel];
if (dsp_state->is_wave_buffer_valid[i]) {
dsp_state->wave_buffer_index =
(dsp_state->wave_buffer_index + 1) % AudioCommon::MAX_WAVE_BUFFERS;
dsp_state->wave_buffer_consumed++;
}
dsp_state->is_wave_buffer_valid[i] = false;
}
}
for (s32 channel = 0; channel < channel_count; channel++) {
auto* dsp_state = dsp_voice_states[channel];
dsp_state->offset = 0;
dsp_state->played_sample_count = 0;
dsp_state->fraction = 0;
std::memset(dsp_state->sample_history.data(), 0,
sizeof(s32) * dsp_state->sample_history.size());
std::memset(&dsp_state->context, 0, sizeof(dsp_state->context));
}
in_params.current_playstate = ServerPlayState::Stop;
in_params.should_depop = in_params.last_playstate == ServerPlayState::Play;
return in_params.should_depop;
}
default:
UNREACHABLE_MSG("Invalid playstate {}", in_params.current_playstate);
}
return false;
}
void ServerVoiceInfo::FlushWaveBuffers(
u8 flush_count, std::array<VoiceState*, AudioCommon::MAX_CHANNEL_COUNT>& dsp_voice_states,
s32 channel_count) {
auto wave_head = in_params.wave_bufffer_head;
for (u8 i = 0; i < flush_count; i++) {
in_params.wave_buffer[wave_head].sent_to_dsp = true;
for (s32 channel = 0; channel < channel_count; channel++) {
auto* dsp_state = dsp_voice_states[channel];
dsp_state->wave_buffer_consumed++;
dsp_state->is_wave_buffer_valid[wave_head] = false;
dsp_state->wave_buffer_index =
(dsp_state->wave_buffer_index + 1) % AudioCommon::MAX_WAVE_BUFFERS;
}
wave_head = (wave_head + 1) % AudioCommon::MAX_WAVE_BUFFERS;
}
}
bool ServerVoiceInfo::HasValidWaveBuffer(const VoiceState* state) const {
const auto& valid_wb = state->is_wave_buffer_valid;
return std::find(valid_wb.begin(), valid_wb.end(), true) != valid_wb.end();
}
VoiceContext::VoiceContext(std::size_t voice_count) : voice_count(voice_count) {
for (std::size_t i = 0; i < voice_count; i++) {
voice_channel_resources.emplace_back(static_cast<s32>(i));
sorted_voice_info.push_back(&voice_info.emplace_back());
voice_states.emplace_back();
dsp_voice_states.emplace_back();
}
}
VoiceContext::~VoiceContext() {
sorted_voice_info.clear();
}
std::size_t VoiceContext::GetVoiceCount() const {
return voice_count;
}
ServerVoiceChannelResource& VoiceContext::GetChannelResource(std::size_t i) {
ASSERT(i < voice_count);
return voice_channel_resources.at(i);
}
const ServerVoiceChannelResource& VoiceContext::GetChannelResource(std::size_t i) const {
ASSERT(i < voice_count);
return voice_channel_resources.at(i);
}
VoiceState& VoiceContext::GetState(std::size_t i) {
ASSERT(i < voice_count);
return voice_states.at(i);
}
const VoiceState& VoiceContext::GetState(std::size_t i) const {
ASSERT(i < voice_count);
return voice_states.at(i);
}
VoiceState& VoiceContext::GetDspSharedState(std::size_t i) {
ASSERT(i < voice_count);
return dsp_voice_states.at(i);
}
const VoiceState& VoiceContext::GetDspSharedState(std::size_t i) const {
ASSERT(i < voice_count);
return dsp_voice_states.at(i);
}
ServerVoiceInfo& VoiceContext::GetInfo(std::size_t i) {
ASSERT(i < voice_count);
return voice_info.at(i);
}
const ServerVoiceInfo& VoiceContext::GetInfo(std::size_t i) const {
ASSERT(i < voice_count);
return voice_info.at(i);
}
ServerVoiceInfo& VoiceContext::GetSortedInfo(std::size_t i) {
ASSERT(i < voice_count);
return *sorted_voice_info.at(i);
}
const ServerVoiceInfo& VoiceContext::GetSortedInfo(std::size_t i) const {
ASSERT(i < voice_count);
return *sorted_voice_info.at(i);
}
s32 VoiceContext::DecodePcm16(s32* output_buffer, ServerWaveBuffer* wave_buffer, s32 channel,
s32 channel_count, s32 buffer_offset, s32 sample_count,
Core::Memory::Memory& memory) {
if (wave_buffer->buffer_address == 0) {
return 0;
}
if (wave_buffer->buffer_size == 0) {
return 0;
}
if (wave_buffer->end_sample_offset < wave_buffer->start_sample_offset) {
return 0;
}
const auto samples_remaining =
(wave_buffer->end_sample_offset - wave_buffer->start_sample_offset) - buffer_offset;
const auto start_offset = (wave_buffer->start_sample_offset + buffer_offset) * channel_count;
const auto buffer_pos = wave_buffer->buffer_address + start_offset;
s16* buffer_data = reinterpret_cast<s16*>(memory.GetPointer(buffer_pos));
const auto samples_processed = std::min(sample_count, samples_remaining);
// Fast path
if (channel_count == 1) {
for (std::size_t i = 0; i < samples_processed; i++) {
output_buffer[i] = buffer_data[i];
}
} else {
for (std::size_t i = 0; i < samples_processed; i++) {
output_buffer[i] = buffer_data[i * channel_count + channel];
}
}
return samples_processed;
}
void VoiceContext::SortInfo() {
for (std::size_t i = 0; i < voice_count; i++) {
sorted_voice_info[i] = &voice_info[i];
}
std::sort(sorted_voice_info.begin(), sorted_voice_info.end(),
[](const ServerVoiceInfo* lhs, const ServerVoiceInfo* rhs) {
const auto& lhs_in = lhs->GetInParams();
const auto& rhs_in = rhs->GetInParams();
// Sort by priority
if (lhs_in.priority != rhs_in.priority) {
return lhs_in.priority > rhs_in.priority;
} else {
// If the priorities match, sort by sorting order
return lhs_in.sorting_order > rhs_in.sorting_order;
}
});
}
void VoiceContext::UpdateStateByDspShared() {
std::memcpy(voice_states.data(), dsp_voice_states.data(),
sizeof(VoiceState) * dsp_voice_states.size());
}
} // namespace AudioCore

View File

@ -0,0 +1,291 @@
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#pragma once
#include <array>
#include "audio_core/algorithm/interpolate.h"
#include "audio_core/codec.h"
#include "audio_core/common.h"
#include "common/bit_field.h"
#include "common/common_funcs.h"
#include "common/common_types.h"
namespace Core::Memory {
class Memory;
}
namespace AudioCore {
class BehaviorInfo;
class VoiceContext;
enum class SampleFormat : u8 {
Invalid = 0,
Pcm8 = 1,
Pcm16 = 2,
Pcm24 = 3,
Pcm32 = 4,
PcmFloat = 5,
Adpcm = 6,
};
enum class PlayState : u8 {
Started = 0,
Stopped = 1,
Paused = 2,
};
enum class ServerPlayState {
Play = 0,
Stop = 1,
RequestStop = 2,
Paused = 3,
};
struct BiquadFilterParameter {
bool enabled{};
INSERT_PADDING_BYTES(1);
std::array<s16, 3> numerator{};
std::array<s16, 2> denominator{};
};
static_assert(sizeof(BiquadFilterParameter) == 0xc, "BiquadFilterParameter is an invalid size");
struct WaveBuffer {
u64_le buffer_address{};
u64_le buffer_size{};
s32_le start_sample_offset{};
s32_le end_sample_offset{};
u8 is_looping{};
u8 end_of_stream{};
u8 sent_to_server{};
INSERT_PADDING_BYTES(5);
u64 context_address{};
u64 context_size{};
INSERT_PADDING_BYTES(8);
};
static_assert(sizeof(WaveBuffer) == 0x38, "WaveBuffer is an invalid size");
struct ServerWaveBuffer {
VAddr buffer_address{};
std::size_t buffer_size{};
s32 start_sample_offset{};
s32 end_sample_offset{};
bool is_looping{};
bool end_of_stream{};
VAddr context_address{};
std::size_t context_size{};
bool sent_to_dsp{true};
};
struct BehaviorFlags {
BitField<0, 1, u16> is_played_samples_reset_at_loop_point;
BitField<1, 1, u16> is_pitch_and_src_skipped;
};
static_assert(sizeof(BehaviorFlags) == 0x4, "BehaviorFlags is an invalid size");
struct VoiceState {
s64 played_sample_count{};
s32 offset{};
s32 wave_buffer_index{};
std::array<bool, AudioCommon::MAX_WAVE_BUFFERS> is_wave_buffer_valid{};
s32 wave_buffer_consumed{};
std::array<s32, AudioCommon::MAX_SAMPLE_HISTORY> sample_history{};
s32 fraction{};
VAddr context_address{};
Codec::ADPCM_Coeff coeff{};
Codec::ADPCMState context{};
std::array<s64, 2> biquad_filter_state{};
std::array<s32, AudioCommon::MAX_MIX_BUFFERS> previous_samples{};
u32 external_context_size{};
bool is_external_context_used{};
bool voice_dropped{};
// TODO(ogniK): Hack until ADPCM streaming is implemented
std::vector<s16> adpcm_samples{};
};
class VoiceChannelResource {
public:
struct InParams {
s32_le id{};
std::array<float_le, AudioCommon::MAX_MIX_BUFFERS> mix_volume{};
bool in_use{};
INSERT_PADDING_BYTES(11);
};
static_assert(sizeof(VoiceChannelResource::InParams) == 0x70, "InParams is an invalid size");
};
class ServerVoiceChannelResource {
public:
explicit ServerVoiceChannelResource(s32 id);
~ServerVoiceChannelResource();
bool InUse() const;
float GetCurrentMixVolumeAt(std::size_t i) const;
float GetLastMixVolumeAt(std::size_t i) const;
void Update(VoiceChannelResource::InParams& in_params);
void UpdateLastMixVolumes();
const std::array<float, AudioCommon::MAX_MIX_BUFFERS>& GetCurrentMixVolume() const;
const std::array<float, AudioCommon::MAX_MIX_BUFFERS>& GetLastMixVolume() const;
private:
s32 id{};
std::array<float, AudioCommon::MAX_MIX_BUFFERS> mix_volume{};
std::array<float, AudioCommon::MAX_MIX_BUFFERS> last_mix_volume{};
bool in_use{};
};
class VoiceInfo {
public:
struct InParams {
s32_le id{};
u32_le node_id{};
u8 is_new{};
u8 is_in_use{};
PlayState play_state{};
SampleFormat sample_format{};
s32_le sample_rate{};
s32_le priority{};
s32_le sorting_order{};
s32_le channel_count{};
float_le pitch{};
float_le volume{};
std::array<BiquadFilterParameter, 2> biquad_filter{};
s32_le wave_buffer_count{};
s16_le wave_buffer_head{};
INSERT_PADDING_BYTES(6);
u64_le additional_params_address{};
u64_le additional_params_size{};
s32_le mix_id{};
s32_le splitter_info_id{};
std::array<WaveBuffer, 4> wave_buffer{};
std::array<u32_le, 6> voice_channel_resource_ids{};
// TODO(ogniK): Remaining flags
u8 is_voice_drop_flag_clear_requested{};
u8 wave_buffer_flush_request_count{};
INSERT_PADDING_BYTES(2);
BehaviorFlags behavior_flags{};
INSERT_PADDING_BYTES(16);
};
static_assert(sizeof(VoiceInfo::InParams) == 0x170, "InParams is an invalid size");
struct OutParams {
u64_le played_sample_count{};
u32_le wave_buffer_consumed{};
u8 voice_dropped{};
INSERT_PADDING_BYTES(3);
};
static_assert(sizeof(VoiceInfo::OutParams) == 0x10, "OutParams is an invalid size");
};
class ServerVoiceInfo {
public:
struct InParams {
bool in_use{};
bool is_new{};
bool should_depop{};
SampleFormat sample_format{};
s32 sample_rate{};
s32 channel_count{};
s32 id{};
s32 node_id{};
s32 mix_id{};
ServerPlayState current_playstate{};
ServerPlayState last_playstate{};
s32 priority{};
s32 sorting_order{};
float pitch{};
float volume{};
float last_volume{};
std::array<BiquadFilterParameter, AudioCommon::MAX_BIQUAD_FILTERS> biquad_filter{};
s32 wave_buffer_count{};
s16 wave_bufffer_head{};
INSERT_PADDING_BYTES(2);
BehaviorFlags behavior_flags{};
VAddr additional_params_address{};
std::size_t additional_params_size{};
std::array<ServerWaveBuffer, AudioCommon::MAX_WAVE_BUFFERS> wave_buffer{};
std::array<s32, AudioCommon::MAX_CHANNEL_COUNT> voice_channel_resource_id{};
s32 splitter_info_id{};
u8 wave_buffer_flush_request_count{};
bool voice_drop_flag{};
bool buffer_mapped{};
std::array<bool, AudioCommon::MAX_BIQUAD_FILTERS> was_biquad_filter_enabled{};
};
struct OutParams {
s64 played_sample_count{};
s32 wave_buffer_consumed{};
};
ServerVoiceInfo();
~ServerVoiceInfo();
void Initialize();
void UpdateParameters(const VoiceInfo::InParams& voice_in, BehaviorInfo& behavior_info);
void UpdateWaveBuffers(const VoiceInfo::InParams& voice_in,
std::array<VoiceState*, AudioCommon::MAX_CHANNEL_COUNT>& voice_states,
BehaviorInfo& behavior_info);
void UpdateWaveBuffer(ServerWaveBuffer& out_wavebuffer, const WaveBuffer& in_wave_buffer,
SampleFormat sample_format, bool is_buffer_valid,
BehaviorInfo& behavior_info);
void WriteOutStatus(VoiceInfo::OutParams& voice_out, VoiceInfo::InParams& voice_in,
std::array<VoiceState*, AudioCommon::MAX_CHANNEL_COUNT>& voice_states);
const InParams& GetInParams() const;
InParams& GetInParams();
const OutParams& GetOutParams() const;
OutParams& GetOutParams();
bool ShouldSkip() const;
bool UpdateForCommandGeneration(VoiceContext& voice_context);
void ResetResources(VoiceContext& voice_context);
bool UpdateParametersForCommandGeneration(
std::array<VoiceState*, AudioCommon::MAX_CHANNEL_COUNT>& dsp_voice_states);
void FlushWaveBuffers(u8 flush_count,
std::array<VoiceState*, AudioCommon::MAX_CHANNEL_COUNT>& dsp_voice_states,
s32 channel_count);
private:
std::vector<s16> stored_samples;
InParams in_params{};
OutParams out_params{};
bool HasValidWaveBuffer(const VoiceState* state) const;
};
class VoiceContext {
public:
VoiceContext(std::size_t voice_count);
~VoiceContext();
std::size_t GetVoiceCount() const;
ServerVoiceChannelResource& GetChannelResource(std::size_t i);
const ServerVoiceChannelResource& GetChannelResource(std::size_t i) const;
VoiceState& GetState(std::size_t i);
const VoiceState& GetState(std::size_t i) const;
VoiceState& GetDspSharedState(std::size_t i);
const VoiceState& GetDspSharedState(std::size_t i) const;
ServerVoiceInfo& GetInfo(std::size_t i);
const ServerVoiceInfo& GetInfo(std::size_t i) const;
ServerVoiceInfo& GetSortedInfo(std::size_t i);
const ServerVoiceInfo& GetSortedInfo(std::size_t i) const;
s32 DecodePcm16(s32* output_buffer, ServerWaveBuffer* wave_buffer, s32 channel,
s32 channel_count, s32 buffer_offset, s32 sample_count,
Core::Memory::Memory& memory);
void SortInfo();
void UpdateStateByDspShared();
private:
std::size_t voice_count{};
std::vector<ServerVoiceChannelResource> voice_channel_resources{};
std::vector<VoiceState> voice_states{};
std::vector<VoiceState> dsp_voice_states{};
std::vector<ServerVoiceInfo> voice_info{};
std::vector<ServerVoiceInfo*> sorted_voice_info{};
};
} // namespace AudioCore

View File

@ -26,7 +26,7 @@ namespace Service::Audio {
class IAudioRenderer final : public ServiceFramework<IAudioRenderer> {
public:
explicit IAudioRenderer(Core::System& system, AudioCore::AudioRendererParameter audren_params,
explicit IAudioRenderer(Core::System& system, AudioCommon::AudioRendererParameter audren_params,
const std::size_t instance_number)
: ServiceFramework("IAudioRenderer") {
// clang-format off
@ -94,14 +94,15 @@ private:
void RequestUpdateImpl(Kernel::HLERequestContext& ctx) {
LOG_DEBUG(Service_Audio, "(STUBBED) called");
auto result = renderer->UpdateAudioRenderer(ctx.ReadBuffer());
std::vector<u8> output_params(ctx.GetWriteBufferSize());
auto result = renderer->UpdateAudioRenderer(ctx.ReadBuffer(), output_params);
if (result.Succeeded()) {
ctx.WriteBuffer(result.Unwrap());
if (result.IsSuccess()) {
ctx.WriteBuffer(output_params);
}
IPC::ResponseBuilder rb{ctx, 2};
rb.Push(result.Code());
rb.Push(result);
}
void Start(Kernel::HLERequestContext& ctx) {
@ -346,7 +347,7 @@ void AudRenU::OpenAudioRenderer(Kernel::HLERequestContext& ctx) {
OpenAudioRendererImpl(ctx);
}
static u64 CalculateNumPerformanceEntries(const AudioCore::AudioRendererParameter& params) {
static u64 CalculateNumPerformanceEntries(const AudioCommon::AudioRendererParameter& params) {
// +1 represents the final mix.
return u64{params.effect_count} + params.submix_count + params.sink_count + params.voice_count +
1;
@ -375,7 +376,7 @@ void AudRenU::GetAudioRendererWorkBufferSize(Kernel::HLERequestContext& ctx) {
constexpr u64 upsampler_manager_size = 0x48;
// Calculates the part of the size that relates to mix buffers.
const auto calculate_mix_buffer_sizes = [](const AudioCore::AudioRendererParameter& params) {
const auto calculate_mix_buffer_sizes = [](const AudioCommon::AudioRendererParameter& params) {
// As of 8.0.0 this is the maximum on voice channels.
constexpr u64 max_voice_channels = 6;
@ -397,7 +398,7 @@ void AudRenU::GetAudioRendererWorkBufferSize(Kernel::HLERequestContext& ctx) {
};
// Calculates the portion of the size related to the mix data (and the sorting thereof).
const auto calculate_mix_info_size = [](const AudioCore::AudioRendererParameter& params) {
const auto calculate_mix_info_size = [](const AudioCommon::AudioRendererParameter& params) {
// The size of the mixing info data structure.
constexpr u64 mix_info_size = 0x940;
@ -447,7 +448,7 @@ void AudRenU::GetAudioRendererWorkBufferSize(Kernel::HLERequestContext& ctx) {
};
// Calculates the part of the size related to voice channel info.
const auto calculate_voice_info_size = [](const AudioCore::AudioRendererParameter& params) {
const auto calculate_voice_info_size = [](const AudioCommon::AudioRendererParameter& params) {
constexpr u64 voice_info_size = 0x220;
constexpr u64 voice_resource_size = 0xD0;
@ -461,7 +462,7 @@ void AudRenU::GetAudioRendererWorkBufferSize(Kernel::HLERequestContext& ctx) {
};
// Calculates the part of the size related to memory pools.
const auto calculate_memory_pools_size = [](const AudioCore::AudioRendererParameter& params) {
const auto calculate_memory_pools_size = [](const AudioCommon::AudioRendererParameter& params) {
const u64 num_memory_pools = sizeof(s32) * (u64{params.effect_count} + params.voice_count);
const u64 memory_pool_info_size = 0x20;
return Common::AlignUp(num_memory_pools * memory_pool_info_size, info_field_alignment_size);
@ -469,7 +470,7 @@ void AudRenU::GetAudioRendererWorkBufferSize(Kernel::HLERequestContext& ctx) {
// Calculates the part of the size related to the splitter context.
const auto calculate_splitter_context_size =
[](const AudioCore::AudioRendererParameter& params) -> u64 {
[](const AudioCommon::AudioRendererParameter& params) -> u64 {
if (!IsFeatureSupported(AudioFeatures::Splitter, params.revision)) {
return 0;
}
@ -488,27 +489,29 @@ void AudRenU::GetAudioRendererWorkBufferSize(Kernel::HLERequestContext& ctx) {
};
// Calculates the part of the size related to the upsampler info.
const auto calculate_upsampler_info_size = [](const AudioCore::AudioRendererParameter& params) {
constexpr u64 upsampler_info_size = 0x280;
// Yes, using the buffer size over info alignment size is intentional here.
return Common::AlignUp(upsampler_info_size * (u64{params.submix_count} + params.sink_count),
buffer_alignment_size);
};
const auto calculate_upsampler_info_size =
[](const AudioCommon::AudioRendererParameter& params) {
constexpr u64 upsampler_info_size = 0x280;
// Yes, using the buffer size over info alignment size is intentional here.
return Common::AlignUp(upsampler_info_size *
(u64{params.submix_count} + params.sink_count),
buffer_alignment_size);
};
// Calculates the part of the size related to effect info.
const auto calculate_effect_info_size = [](const AudioCore::AudioRendererParameter& params) {
const auto calculate_effect_info_size = [](const AudioCommon::AudioRendererParameter& params) {
constexpr u64 effect_info_size = 0x2B0;
return Common::AlignUp(effect_info_size * params.effect_count, info_field_alignment_size);
};
// Calculates the part of the size related to audio sink info.
const auto calculate_sink_info_size = [](const AudioCore::AudioRendererParameter& params) {
const auto calculate_sink_info_size = [](const AudioCommon::AudioRendererParameter& params) {
const u64 sink_info_size = 0x170;
return Common::AlignUp(sink_info_size * params.sink_count, info_field_alignment_size);
};
// Calculates the part of the size related to voice state info.
const auto calculate_voice_state_size = [](const AudioCore::AudioRendererParameter& params) {
const auto calculate_voice_state_size = [](const AudioCommon::AudioRendererParameter& params) {
const u64 voice_state_size = 0x100;
const u64 additional_size = buffer_alignment_size - 1;
return Common::AlignUp(voice_state_size * params.voice_count + additional_size,
@ -516,7 +519,7 @@ void AudRenU::GetAudioRendererWorkBufferSize(Kernel::HLERequestContext& ctx) {
};
// Calculates the part of the size related to performance statistics.
const auto calculate_perf_size = [](const AudioCore::AudioRendererParameter& params) {
const auto calculate_perf_size = [](const AudioCommon::AudioRendererParameter& params) {
// Extra size value appended to the end of the calculation.
constexpr u64 appended = 128;
@ -543,79 +546,81 @@ void AudRenU::GetAudioRendererWorkBufferSize(Kernel::HLERequestContext& ctx) {
};
// Calculates the part of the size that relates to the audio command buffer.
const auto calculate_command_buffer_size = [](const AudioCore::AudioRendererParameter& params) {
constexpr u64 alignment = (buffer_alignment_size - 1) * 2;
const auto calculate_command_buffer_size =
[](const AudioCommon::AudioRendererParameter& params) {
constexpr u64 alignment = (buffer_alignment_size - 1) * 2;
if (!IsFeatureSupported(AudioFeatures::VariadicCommandBuffer, params.revision)) {
constexpr u64 command_buffer_size = 0x18000;
if (!IsFeatureSupported(AudioFeatures::VariadicCommandBuffer, params.revision)) {
constexpr u64 command_buffer_size = 0x18000;
return command_buffer_size + alignment;
}
return command_buffer_size + alignment;
}
// When the variadic command buffer is supported, this means
// the command generator for the audio renderer can issue commands
// that are (as one would expect), variable in size. So what we need to do
// is determine the maximum possible size for a few command data structures
// then multiply them by the amount of present commands indicated by the given
// respective audio parameters.
// When the variadic command buffer is supported, this means
// the command generator for the audio renderer can issue commands
// that are (as one would expect), variable in size. So what we need to do
// is determine the maximum possible size for a few command data structures
// then multiply them by the amount of present commands indicated by the given
// respective audio parameters.
constexpr u64 max_biquad_filters = 2;
constexpr u64 max_mix_buffers = 24;
constexpr u64 max_biquad_filters = 2;
constexpr u64 max_mix_buffers = 24;
constexpr u64 biquad_filter_command_size = 0x2C;
constexpr u64 biquad_filter_command_size = 0x2C;
constexpr u64 depop_mix_command_size = 0x24;
constexpr u64 depop_setup_command_size = 0x50;
constexpr u64 depop_mix_command_size = 0x24;
constexpr u64 depop_setup_command_size = 0x50;
constexpr u64 effect_command_max_size = 0x540;
constexpr u64 effect_command_max_size = 0x540;
constexpr u64 mix_command_size = 0x1C;
constexpr u64 mix_ramp_command_size = 0x24;
constexpr u64 mix_ramp_grouped_command_size = 0x13C;
constexpr u64 mix_command_size = 0x1C;
constexpr u64 mix_ramp_command_size = 0x24;
constexpr u64 mix_ramp_grouped_command_size = 0x13C;
constexpr u64 perf_command_size = 0x28;
constexpr u64 perf_command_size = 0x28;
constexpr u64 sink_command_size = 0x130;
constexpr u64 sink_command_size = 0x130;
constexpr u64 submix_command_max_size =
depop_mix_command_size + (mix_command_size * max_mix_buffers) * max_mix_buffers;
constexpr u64 submix_command_max_size =
depop_mix_command_size + (mix_command_size * max_mix_buffers) * max_mix_buffers;
constexpr u64 volume_command_size = 0x1C;
constexpr u64 volume_ramp_command_size = 0x20;
constexpr u64 volume_command_size = 0x1C;
constexpr u64 volume_ramp_command_size = 0x20;
constexpr u64 voice_biquad_filter_command_size =
biquad_filter_command_size * max_biquad_filters;
constexpr u64 voice_data_command_size = 0x9C;
const u64 voice_command_max_size =
(params.splitter_count * depop_setup_command_size) +
(voice_data_command_size + voice_biquad_filter_command_size + volume_ramp_command_size +
mix_ramp_grouped_command_size);
constexpr u64 voice_biquad_filter_command_size =
biquad_filter_command_size * max_biquad_filters;
constexpr u64 voice_data_command_size = 0x9C;
const u64 voice_command_max_size =
(params.splitter_count * depop_setup_command_size) +
(voice_data_command_size + voice_biquad_filter_command_size +
volume_ramp_command_size + mix_ramp_grouped_command_size);
// Now calculate the individual elements that comprise the size and add them together.
const u64 effect_commands_size = params.effect_count * effect_command_max_size;
// Now calculate the individual elements that comprise the size and add them together.
const u64 effect_commands_size = params.effect_count * effect_command_max_size;
const u64 final_mix_commands_size =
depop_mix_command_size + volume_command_size * max_mix_buffers;
const u64 final_mix_commands_size =
depop_mix_command_size + volume_command_size * max_mix_buffers;
const u64 perf_commands_size =
perf_command_size * (CalculateNumPerformanceEntries(params) + max_perf_detail_entries);
const u64 perf_commands_size =
perf_command_size *
(CalculateNumPerformanceEntries(params) + max_perf_detail_entries);
const u64 sink_commands_size = params.sink_count * sink_command_size;
const u64 sink_commands_size = params.sink_count * sink_command_size;
const u64 splitter_commands_size =
params.num_splitter_send_channels * max_mix_buffers * mix_ramp_command_size;
const u64 splitter_commands_size =
params.num_splitter_send_channels * max_mix_buffers * mix_ramp_command_size;
const u64 submix_commands_size = params.submix_count * submix_command_max_size;
const u64 submix_commands_size = params.submix_count * submix_command_max_size;
const u64 voice_commands_size = params.voice_count * voice_command_max_size;
const u64 voice_commands_size = params.voice_count * voice_command_max_size;
return effect_commands_size + final_mix_commands_size + perf_commands_size +
sink_commands_size + splitter_commands_size + submix_commands_size +
voice_commands_size + alignment;
};
return effect_commands_size + final_mix_commands_size + perf_commands_size +
sink_commands_size + splitter_commands_size + submix_commands_size +
voice_commands_size + alignment;
};
IPC::RequestParser rp{ctx};
const auto params = rp.PopRaw<AudioCore::AudioRendererParameter>();
const auto params = rp.PopRaw<AudioCommon::AudioRendererParameter>();
u64 size = 0;
size += calculate_mix_buffer_sizes(params);
@ -681,7 +686,7 @@ void AudRenU::GetAudioDeviceServiceWithRevisionInfo(Kernel::HLERequestContext& c
void AudRenU::OpenAudioRendererImpl(Kernel::HLERequestContext& ctx) {
IPC::RequestParser rp{ctx};
const auto params = rp.PopRaw<AudioCore::AudioRendererParameter>();
const auto params = rp.PopRaw<AudioCommon::AudioRendererParameter>();
IPC::ResponseBuilder rb{ctx, 2, 0, 1};
rb.Push(RESULT_SUCCESS);