yuzu-emu
/
yuzu
Archived
1
0
Fork 0

server_manager: use multi wait API

This commit is contained in:
Liam 2024-02-07 12:09:26 -05:00
parent 9404633bfd
commit 6810929f6a
2 changed files with 245 additions and 272 deletions

View File

@ -20,50 +20,91 @@
namespace Service { namespace Service {
constexpr size_t MaximumWaitObjects = 0x40; enum class UserDataTag {
enum HandleType {
Port, Port,
Session, Session,
DeferEvent, DeferEvent,
Event,
}; };
ServerManager::ServerManager(Core::System& system) : m_system{system}, m_serve_mutex{system} { class Port : public MultiWaitHolder, public Common::IntrusiveListBaseNode<Port> {
public:
explicit Port(Kernel::KServerPort* server_port, SessionRequestHandlerFactory&& handler_factory)
: MultiWaitHolder(server_port), m_handler_factory(std::move(handler_factory)) {
this->SetUserData(static_cast<uintptr_t>(UserDataTag::Port));
}
~Port() {
this->GetNativeHandle()->Close();
}
SessionRequestHandlerPtr CreateHandler() {
return m_handler_factory();
}
private:
const SessionRequestHandlerFactory m_handler_factory;
};
class Session : public MultiWaitHolder, public Common::IntrusiveListBaseNode<Session> {
public:
explicit Session(Kernel::KServerSession* server_session,
std::shared_ptr<SessionRequestManager>&& manager)
: MultiWaitHolder(server_session), m_manager(std::move(manager)) {
this->SetUserData(static_cast<uintptr_t>(UserDataTag::Session));
}
~Session() {
this->GetNativeHandle()->Close();
}
std::shared_ptr<SessionRequestManager>& GetManager() {
return m_manager;
}
std::shared_ptr<HLERequestContext>& GetContext() {
return m_context;
}
private:
std::shared_ptr<SessionRequestManager> m_manager;
std::shared_ptr<HLERequestContext> m_context;
};
ServerManager::ServerManager(Core::System& system) : m_system{system}, m_selection_mutex{system} {
// Initialize event. // Initialize event.
m_event = Kernel::KEvent::Create(system.Kernel()); m_wakeup_event = Kernel::KEvent::Create(system.Kernel());
m_event->Initialize(nullptr); m_wakeup_event->Initialize(nullptr);
// Register event. // Register event.
Kernel::KEvent::Register(system.Kernel(), m_event); Kernel::KEvent::Register(system.Kernel(), m_wakeup_event);
// Link to holder.
m_wakeup_holder.emplace(std::addressof(m_wakeup_event->GetReadableEvent()));
m_wakeup_holder->LinkToMultiWait(std::addressof(m_deferred_list));
} }
ServerManager::~ServerManager() { ServerManager::~ServerManager() {
// Signal stop. // Signal stop.
m_stop_source.request_stop(); m_stop_source.request_stop();
m_event->Signal(); m_wakeup_event->Signal();
// Wait for processing to stop. // Wait for processing to stop.
m_stopped.Wait(); m_stopped.Wait();
m_threads.clear(); m_threads.clear();
// Clean up server ports. // Clean up ports.
for (const auto& [port, handler] : m_ports) { for (auto it = m_servers.begin(); it != m_servers.end(); it = m_servers.erase(it)) {
port->Close(); delete std::addressof(*it);
} }
// Clean up sessions. // Clean up sessions.
for (const auto& [session, manager] : m_sessions) { for (auto it = m_sessions.begin(); it != m_sessions.end(); it = m_sessions.erase(it)) {
session->Close(); delete std::addressof(*it);
} }
for (const auto& request : m_deferrals) { // Close wakeup event.
request.session->Close(); m_wakeup_event->GetReadableEvent().Close();
} m_wakeup_event->Close();
// Close event.
m_event->GetReadableEvent().Close();
m_event->Close();
if (m_deferral_event) { if (m_deferral_event) {
m_deferral_event->GetReadableEvent().Close(); m_deferral_event->GetReadableEvent().Close();
@ -75,19 +116,19 @@ void ServerManager::RunServer(std::unique_ptr<ServerManager>&& server_manager) {
server_manager->m_system.RunServer(std::move(server_manager)); server_manager->m_system.RunServer(std::move(server_manager));
} }
Result ServerManager::RegisterSession(Kernel::KServerSession* session, Result ServerManager::RegisterSession(Kernel::KServerSession* server_session,
std::shared_ptr<SessionRequestManager> manager) { std::shared_ptr<SessionRequestManager> manager) {
ASSERT(m_sessions.size() + m_ports.size() < MaximumWaitObjects);
// We are taking ownership of the server session, so don't open it. // We are taking ownership of the server session, so don't open it.
auto* session = new Session(server_session, std::move(manager));
// Begin tracking the server session. // Begin tracking the server session.
{ {
std::scoped_lock ll{m_list_mutex}; std::scoped_lock ll{m_deferred_list_mutex};
m_sessions.emplace(session, std::move(manager)); m_sessions.push_back(*session);
} }
// Signal the wakeup event. // Register to wait on the session.
m_event->Signal(); this->LinkToDeferredList(session);
R_SUCCEED(); R_SUCCEED();
} }
@ -95,21 +136,22 @@ Result ServerManager::RegisterSession(Kernel::KServerSession* session,
Result ServerManager::RegisterNamedService(const std::string& service_name, Result ServerManager::RegisterNamedService(const std::string& service_name,
SessionRequestHandlerFactory&& handler_factory, SessionRequestHandlerFactory&& handler_factory,
u32 max_sessions) { u32 max_sessions) {
ASSERT(m_sessions.size() + m_ports.size() < MaximumWaitObjects);
// Add the new server to sm: and get the moved server port. // Add the new server to sm: and get the moved server port.
Kernel::KServerPort* server_port{}; Kernel::KServerPort* server_port{};
R_ASSERT(m_system.ServiceManager().RegisterService(std::addressof(server_port), service_name, R_ASSERT(m_system.ServiceManager().RegisterService(std::addressof(server_port), service_name,
max_sessions, handler_factory)); max_sessions, handler_factory));
// We are taking ownership of the server port, so don't open it.
auto* server = new Port(server_port, std::move(handler_factory));
// Begin tracking the server port. // Begin tracking the server port.
{ {
std::scoped_lock ll{m_list_mutex}; std::scoped_lock ll{m_deferred_list_mutex};
m_ports.emplace(server_port, std::move(handler_factory)); m_servers.push_back(*server);
} }
// Signal the wakeup event. // Register to wait on the server port.
m_event->Signal(); this->LinkToDeferredList(server);
R_SUCCEED(); R_SUCCEED();
} }
@ -127,8 +169,6 @@ Result ServerManager::RegisterNamedService(const std::string& service_name,
Result ServerManager::ManageNamedPort(const std::string& service_name, Result ServerManager::ManageNamedPort(const std::string& service_name,
SessionRequestHandlerFactory&& handler_factory, SessionRequestHandlerFactory&& handler_factory,
u32 max_sessions) { u32 max_sessions) {
ASSERT(m_sessions.size() + m_ports.size() < MaximumWaitObjects);
// Create a new port. // Create a new port.
auto* port = Kernel::KPort::Create(m_system.Kernel()); auto* port = Kernel::KPort::Create(m_system.Kernel());
port->Initialize(max_sessions, false, 0); port->Initialize(max_sessions, false, 0);
@ -149,12 +189,18 @@ Result ServerManager::ManageNamedPort(const std::string& service_name,
// Open a new reference to the server port. // Open a new reference to the server port.
port->GetServerPort().Open(); port->GetServerPort().Open();
// Begin tracking the server port. // Transfer ownership into a new port object.
auto* server = new Port(std::addressof(port->GetServerPort()), std::move(handler_factory));
// Begin tracking the port.
{ {
std::scoped_lock ll{m_list_mutex}; std::scoped_lock ll{m_deferred_list_mutex};
m_ports.emplace(std::addressof(port->GetServerPort()), std::move(handler_factory)); m_servers.push_back(*server);
} }
// Register to wait on the port.
this->LinkToDeferredList(server);
// We succeeded. // We succeeded.
R_SUCCEED(); R_SUCCEED();
} }
@ -173,6 +219,11 @@ Result ServerManager::ManageDeferral(Kernel::KEvent** out_event) {
// Set the output. // Set the output.
*out_event = m_deferral_event; *out_event = m_deferral_event;
// Register to wait on the event.
m_deferral_holder.emplace(std::addressof(m_deferral_event->GetReadableEvent()));
m_deferral_holder->SetUserData(static_cast<uintptr_t>(UserDataTag::DeferEvent));
this->LinkToDeferredList(std::addressof(*m_deferral_holder));
// We succeeded. // We succeeded.
R_SUCCEED(); R_SUCCEED();
} }
@ -191,270 +242,185 @@ Result ServerManager::LoopProcess() {
R_RETURN(this->LoopProcessImpl()); R_RETURN(this->LoopProcessImpl());
} }
void ServerManager::LinkToDeferredList(MultiWaitHolder* holder) {
// Link.
{
std::scoped_lock lk{m_deferred_list_mutex};
holder->LinkToMultiWait(std::addressof(m_deferred_list));
}
// Signal the wakeup event.
m_wakeup_event->Signal();
}
void ServerManager::LinkDeferred() {
std::scoped_lock lk{m_deferred_list_mutex};
m_multi_wait.MoveAll(std::addressof(m_deferred_list));
}
MultiWaitHolder* ServerManager::WaitSignaled() {
// Ensure we are the only thread waiting for this server.
std::scoped_lock lk{m_selection_mutex};
while (true) {
this->LinkDeferred();
// If we're done, return before we start waiting.
if (m_stop_source.stop_requested()) {
return nullptr;
}
auto* selected = m_multi_wait.WaitAny(m_system.Kernel());
if (selected == std::addressof(*m_wakeup_holder)) {
// Clear and restart if we were woken up.
m_wakeup_event->Clear();
} else {
// Unlink and handle the event.
selected->UnlinkFromMultiWait();
return selected;
}
}
}
Result ServerManager::Process(MultiWaitHolder* holder) {
switch (static_cast<UserDataTag>(holder->GetUserData())) {
case UserDataTag::Session:
R_RETURN(this->OnSessionEvent(static_cast<Session*>(holder)));
case UserDataTag::Port:
R_RETURN(this->OnPortEvent(static_cast<Port*>(holder)));
case UserDataTag::DeferEvent:
R_RETURN(this->OnDeferralEvent());
default:
UNREACHABLE();
}
}
bool ServerManager::WaitAndProcessImpl() {
if (auto* signaled_holder = this->WaitSignaled(); signaled_holder != nullptr) {
R_ASSERT(this->Process(signaled_holder));
return true;
} else {
return false;
}
}
Result ServerManager::LoopProcessImpl() { Result ServerManager::LoopProcessImpl() {
while (!m_stop_source.stop_requested()) { while (!m_stop_source.stop_requested()) {
R_TRY(this->WaitAndProcessImpl()); this->WaitAndProcessImpl();
} }
R_SUCCEED(); R_SUCCEED();
} }
Result ServerManager::WaitAndProcessImpl() { Result ServerManager::OnPortEvent(Port* server) {
Kernel::KScopedAutoObject<Kernel::KSynchronizationObject> wait_obj;
HandleType wait_type{};
// Ensure we are the only thread waiting for this server.
std::unique_lock sl{m_serve_mutex};
// If we're done, return before we start waiting.
R_SUCCEED_IF(m_stop_source.stop_requested());
// Wait for a tracked object to become signaled.
{
s32 num_objs{};
std::array<HandleType, MaximumWaitObjects> wait_types{};
std::array<Kernel::KSynchronizationObject*, MaximumWaitObjects> wait_objs{};
const auto AddWaiter{
[&](Kernel::KSynchronizationObject* synchronization_object, HandleType type) {
// Open a new reference to the object.
synchronization_object->Open();
// Insert into the list.
wait_types[num_objs] = type;
wait_objs[num_objs++] = synchronization_object;
}};
{
std::scoped_lock ll{m_list_mutex};
// Add all of our ports.
for (const auto& [port, handler] : m_ports) {
AddWaiter(port, HandleType::Port);
}
// Add all of our sessions.
for (const auto& [session, manager] : m_sessions) {
AddWaiter(session, HandleType::Session);
}
}
// Add the deferral wakeup event.
if (m_deferral_event != nullptr) {
AddWaiter(std::addressof(m_deferral_event->GetReadableEvent()), HandleType::DeferEvent);
}
// Add the wakeup event.
AddWaiter(std::addressof(m_event->GetReadableEvent()), HandleType::Event);
// Clean up extra references on exit.
SCOPE_EXIT({
for (s32 i = 0; i < num_objs; i++) {
wait_objs[i]->Close();
}
});
// Wait for a signal.
s32 out_index{-1};
R_TRY_CATCH(Kernel::KSynchronizationObject::Wait(m_system.Kernel(), &out_index,
wait_objs.data(), num_objs, -1)) {
R_CATCH(Kernel::ResultSessionClosed) {
// On session closed, index is updated and we don't want to return an error.
}
}
R_END_TRY_CATCH;
ASSERT(out_index >= 0 && out_index < num_objs);
// Set the output index.
wait_obj = wait_objs[out_index];
wait_type = wait_types[out_index];
}
// Process what we just received, temporarily removing the object so it is
// not processed concurrently by another thread.
{
switch (wait_type) {
case HandleType::Port: {
// Port signaled.
auto* port = wait_obj->DynamicCast<Kernel::KServerPort*>();
SessionRequestHandlerFactory handler_factory;
// Remove from tracking.
{
std::scoped_lock ll{m_list_mutex};
ASSERT(m_ports.contains(port));
m_ports.at(port).swap(handler_factory);
m_ports.erase(port);
}
// Allow other threads to serve.
sl.unlock();
// Finish.
R_RETURN(this->OnPortEvent(port, std::move(handler_factory)));
}
case HandleType::Session: {
// Session signaled.
auto* session = wait_obj->DynamicCast<Kernel::KServerSession*>();
std::shared_ptr<SessionRequestManager> manager;
// Remove from tracking.
{
std::scoped_lock ll{m_list_mutex};
ASSERT(m_sessions.contains(session));
m_sessions.at(session).swap(manager);
m_sessions.erase(session);
}
// Allow other threads to serve.
sl.unlock();
// Finish.
R_RETURN(this->OnSessionEvent(session, std::move(manager)));
}
case HandleType::DeferEvent: {
// Clear event.
ASSERT(R_SUCCEEDED(m_deferral_event->Clear()));
// Drain the list of deferrals while we process.
std::list<RequestState> deferrals;
{
std::scoped_lock ll{m_list_mutex};
m_deferrals.swap(deferrals);
}
// Allow other threads to serve.
sl.unlock();
// Finish.
R_RETURN(this->OnDeferralEvent(std::move(deferrals)));
}
case HandleType::Event: {
// Clear event and finish.
R_RETURN(m_event->Clear());
}
default: {
UNREACHABLE();
}
}
}
}
Result ServerManager::OnPortEvent(Kernel::KServerPort* port,
SessionRequestHandlerFactory&& handler_factory) {
// Accept a new server session. // Accept a new server session.
Kernel::KServerSession* session = port->AcceptSession(); auto* server_port = static_cast<Kernel::KServerPort*>(server->GetNativeHandle());
ASSERT(session != nullptr); Kernel::KServerSession* server_session = server_port->AcceptSession();
ASSERT(server_session != nullptr);
// Create the session manager and install the handler. // Create the session manager and install the handler.
auto manager = std::make_shared<SessionRequestManager>(m_system.Kernel(), *this); auto manager = std::make_shared<SessionRequestManager>(m_system.Kernel(), *this);
manager->SetSessionHandler(handler_factory()); manager->SetSessionHandler(server->CreateHandler());
// Track the server session. // Create and register the new session.
{ this->RegisterSession(server_session, std::move(manager));
std::scoped_lock ll{m_list_mutex};
m_ports.emplace(port, std::move(handler_factory));
m_sessions.emplace(session, std::move(manager));
}
// Signal the wakeup event. // Resume tracking the port.
m_event->Signal(); this->LinkToDeferredList(server);
// We succeeded. // We succeeded.
R_SUCCEED(); R_SUCCEED();
} }
Result ServerManager::OnSessionEvent(Kernel::KServerSession* session, Result ServerManager::OnSessionEvent(Session* session) {
std::shared_ptr<SessionRequestManager>&& manager) { Result res = ResultSuccess;
Result rc{ResultSuccess};
// Try to receive a message. // Try to receive a message.
std::shared_ptr<HLERequestContext> context; auto* server_session = static_cast<Kernel::KServerSession*>(session->GetNativeHandle());
rc = session->ReceiveRequestHLE(&context, manager); res = server_session->ReceiveRequestHLE(&session->GetContext(), session->GetManager());
// If the session has been closed, we're done. // If the session has been closed, we're done.
if (rc == Kernel::ResultSessionClosed) { if (res == Kernel::ResultSessionClosed) {
// Close the session. this->DestroySession(session);
session->Close();
// Finish.
R_SUCCEED(); R_SUCCEED();
} }
ASSERT(R_SUCCEEDED(rc));
RequestState request{ R_ASSERT(res);
.session = session,
.context = std::move(context),
.manager = std::move(manager),
};
// Complete the sync request with deferral handling. // Complete the sync request with deferral handling.
R_RETURN(this->CompleteSyncRequest(std::move(request))); R_RETURN(this->CompleteSyncRequest(session));
} }
Result ServerManager::CompleteSyncRequest(RequestState&& request) { Result ServerManager::CompleteSyncRequest(Session* session) {
Result rc{ResultSuccess}; Result res = ResultSuccess;
Result service_rc{ResultSuccess}; Result service_res = ResultSuccess;
// Mark the request as not deferred. // Mark the request as not deferred.
request.context->SetIsDeferred(false); session->GetContext()->SetIsDeferred(false);
// Complete the request. We have exclusive access to this session. // Complete the request. We have exclusive access to this session.
service_rc = request.manager->CompleteSyncRequest(request.session, *request.context); auto* server_session = static_cast<Kernel::KServerSession*>(session->GetNativeHandle());
service_res =
session->GetManager()->CompleteSyncRequest(server_session, *session->GetContext());
// If we've been deferred, we're done. // If we've been deferred, we're done.
if (request.context->GetIsDeferred()) { if (session->GetContext()->GetIsDeferred()) {
// Insert into deferral list. // Insert into deferred session list.
std::scoped_lock ll{m_list_mutex}; std::scoped_lock ll{m_deferred_list_mutex};
m_deferrals.emplace_back(std::move(request)); m_deferred_sessions.push_back(session);
// Finish. // Finish.
R_SUCCEED(); R_SUCCEED();
} }
// Send the reply. // Send the reply.
rc = request.session->SendReplyHLE(); res = server_session->SendReplyHLE();
// If the session has been closed, we're done. // If the session has been closed, we're done.
if (rc == Kernel::ResultSessionClosed || service_rc == IPC::ResultSessionClosed) { if (res == Kernel::ResultSessionClosed || service_res == IPC::ResultSessionClosed) {
// Close the session. this->DestroySession(session);
request.session->Close();
// Finish.
R_SUCCEED(); R_SUCCEED();
} }
ASSERT(R_SUCCEEDED(rc)); R_ASSERT(res);
ASSERT(R_SUCCEEDED(service_rc)); R_ASSERT(service_res);
// Reinsert the session. // We succeeded, so we can process future messages on this session.
{ this->LinkToDeferredList(session);
std::scoped_lock ll{m_list_mutex};
m_sessions.emplace(request.session, std::move(request.manager));
}
// Signal the wakeup event.
m_event->Signal();
// We succeeded.
R_SUCCEED(); R_SUCCEED();
} }
Result ServerManager::OnDeferralEvent(std::list<RequestState>&& deferrals) { Result ServerManager::OnDeferralEvent() {
ON_RESULT_FAILURE { // Clear event before grabbing the list.
std::scoped_lock ll{m_list_mutex}; m_deferral_event->Clear();
m_deferrals.splice(m_deferrals.end(), deferrals);
};
while (!deferrals.empty()) { // Get and clear list.
RequestState request = deferrals.front(); const auto deferrals = [&] {
deferrals.pop_front(); std::scoped_lock lk{m_deferred_list_mutex};
return std::move(m_deferred_sessions);
}();
// Try again to complete the request. // Relink deferral event.
R_TRY(this->CompleteSyncRequest(std::move(request))); this->LinkToDeferredList(std::addressof(*m_deferral_holder));
// For each session, try again to complete the request.
for (auto* session : deferrals) {
R_ASSERT(this->CompleteSyncRequest(session));
} }
R_SUCCEED(); R_SUCCEED();
} }
void ServerManager::DestroySession(Session* session) {
// Unlink.
{
std::scoped_lock lk{m_deferred_list_mutex};
m_sessions.erase(m_sessions.iterator_to(*session));
}
// Free the session.
delete session;
}
} // namespace Service } // namespace Service

View File

@ -3,17 +3,16 @@
#pragma once #pragma once
#include <functional>
#include <list> #include <list>
#include <map>
#include <mutex> #include <mutex>
#include <string_view> #include <optional>
#include <vector> #include <vector>
#include "common/polyfill_thread.h" #include "common/polyfill_thread.h"
#include "common/thread.h" #include "common/thread.h"
#include "core/hle/result.h" #include "core/hle/result.h"
#include "core/hle/service/hle_ipc.h" #include "core/hle/service/hle_ipc.h"
#include "core/hle/service/os/multi_wait.h"
#include "core/hle/service/os/mutex.h" #include "core/hle/service/os/mutex.h"
namespace Core { namespace Core {
@ -24,11 +23,13 @@ namespace Kernel {
class KEvent; class KEvent;
class KServerPort; class KServerPort;
class KServerSession; class KServerSession;
class KSynchronizationObject;
} // namespace Kernel } // namespace Kernel
namespace Service { namespace Service {
class Port;
class Session;
class ServerManager { class ServerManager {
public: public:
explicit ServerManager(Core::System& system); explicit ServerManager(Core::System& system);
@ -52,34 +53,40 @@ public:
static void RunServer(std::unique_ptr<ServerManager>&& server); static void RunServer(std::unique_ptr<ServerManager>&& server);
private: private:
struct RequestState; void LinkToDeferredList(MultiWaitHolder* holder);
void LinkDeferred();
MultiWaitHolder* WaitSignaled();
Result Process(MultiWaitHolder* holder);
bool WaitAndProcessImpl();
Result LoopProcessImpl(); Result LoopProcessImpl();
Result WaitAndProcessImpl();
Result OnPortEvent(Kernel::KServerPort* port, SessionRequestHandlerFactory&& handler_factory); Result OnPortEvent(Port* port);
Result OnSessionEvent(Kernel::KServerSession* session, Result OnSessionEvent(Session* session);
std::shared_ptr<SessionRequestManager>&& manager); Result OnDeferralEvent();
Result OnDeferralEvent(std::list<RequestState>&& deferrals); Result CompleteSyncRequest(Session* session);
Result CompleteSyncRequest(RequestState&& state);
private:
void DestroySession(Session* session);
private: private:
Core::System& m_system; Core::System& m_system;
Mutex m_serve_mutex; Mutex m_selection_mutex;
std::mutex m_list_mutex;
// Guest state tracking // Events
std::map<Kernel::KServerPort*, SessionRequestHandlerFactory> m_ports{}; Kernel::KEvent* m_wakeup_event{};
std::map<Kernel::KServerSession*, std::shared_ptr<SessionRequestManager>> m_sessions{};
Kernel::KEvent* m_event{};
Kernel::KEvent* m_deferral_event{}; Kernel::KEvent* m_deferral_event{};
// Deferral tracking // Deferred wait list
struct RequestState { std::mutex m_deferred_list_mutex{};
Kernel::KServerSession* session; MultiWait m_deferred_list{};
std::shared_ptr<HLERequestContext> context;
std::shared_ptr<SessionRequestManager> manager; // Guest state tracking
}; MultiWait m_multi_wait{};
std::list<RequestState> m_deferrals{}; Common::IntrusiveListBaseTraits<Port>::ListType m_servers{};
Common::IntrusiveListBaseTraits<Session>::ListType m_sessions{};
std::list<Session*> m_deferred_sessions{};
std::optional<MultiWaitHolder> m_wakeup_holder{};
std::optional<MultiWaitHolder> m_deferral_holder{};
// Host state tracking // Host state tracking
Common::Event m_stopped{}; Common::Event m_stopped{};