core: hle: kernel: k_page_bitmap: Refresh.
This commit is contained in:
parent
50bfacca88
commit
6b6c02f541
|
@ -16,107 +16,126 @@
|
|||
namespace Kernel {
|
||||
|
||||
class KPageBitmap {
|
||||
private:
|
||||
public:
|
||||
class RandomBitGenerator {
|
||||
private:
|
||||
Common::TinyMT rng{};
|
||||
u32 entropy{};
|
||||
u32 bits_available{};
|
||||
|
||||
private:
|
||||
void RefreshEntropy() {
|
||||
entropy = rng.GenerateRandomU32();
|
||||
bits_available = static_cast<u32>(Common::BitSize<decltype(entropy)>());
|
||||
}
|
||||
|
||||
bool GenerateRandomBit() {
|
||||
if (bits_available == 0) {
|
||||
this->RefreshEntropy();
|
||||
}
|
||||
|
||||
const bool rnd_bit = (entropy & 1) != 0;
|
||||
entropy >>= 1;
|
||||
--bits_available;
|
||||
return rnd_bit;
|
||||
}
|
||||
|
||||
public:
|
||||
RandomBitGenerator() {
|
||||
rng.Initialize(static_cast<u32>(KSystemControl::GenerateRandomU64()));
|
||||
m_rng.Initialize(static_cast<u32>(KSystemControl::GenerateRandomU64()));
|
||||
}
|
||||
|
||||
std::size_t SelectRandomBit(u64 bitmap) {
|
||||
u64 SelectRandomBit(u64 bitmap) {
|
||||
u64 selected = 0;
|
||||
|
||||
u64 cur_num_bits = Common::BitSize<decltype(bitmap)>() / 2;
|
||||
u64 cur_mask = (1ULL << cur_num_bits) - 1;
|
||||
for (size_t cur_num_bits = Common::BitSize<decltype(bitmap)>() / 2; cur_num_bits != 0;
|
||||
cur_num_bits /= 2) {
|
||||
const u64 high = (bitmap >> cur_num_bits);
|
||||
const u64 low = (bitmap & (~(UINT64_C(0xFFFFFFFFFFFFFFFF) << cur_num_bits)));
|
||||
|
||||
while (cur_num_bits) {
|
||||
const u64 low = (bitmap >> 0) & cur_mask;
|
||||
const u64 high = (bitmap >> cur_num_bits) & cur_mask;
|
||||
|
||||
bool choose_low;
|
||||
if (high == 0) {
|
||||
// If only low val is set, choose low.
|
||||
choose_low = true;
|
||||
} else if (low == 0) {
|
||||
// If only high val is set, choose high.
|
||||
choose_low = false;
|
||||
} else {
|
||||
// If both are set, choose random.
|
||||
choose_low = this->GenerateRandomBit();
|
||||
}
|
||||
|
||||
// If we chose low, proceed with low.
|
||||
if (choose_low) {
|
||||
bitmap = low;
|
||||
selected += 0;
|
||||
} else {
|
||||
// Choose high if we have high and (don't have low or select high randomly).
|
||||
if (high && (low == 0 || this->GenerateRandomBit())) {
|
||||
bitmap = high;
|
||||
selected += cur_num_bits;
|
||||
} else {
|
||||
bitmap = low;
|
||||
selected += 0;
|
||||
}
|
||||
|
||||
// Proceed.
|
||||
cur_num_bits /= 2;
|
||||
cur_mask >>= cur_num_bits;
|
||||
}
|
||||
|
||||
return selected;
|
||||
}
|
||||
|
||||
u64 GenerateRandom(u64 max) {
|
||||
// Determine the number of bits we need.
|
||||
const u64 bits_needed = 1 + (Common::BitSize<decltype(max)>() - std::countl_zero(max));
|
||||
|
||||
// Generate a random value of the desired bitwidth.
|
||||
const u64 rnd = this->GenerateRandomBits(static_cast<u32>(bits_needed));
|
||||
|
||||
// Adjust the value to be in range.
|
||||
return rnd - ((rnd / max) * max);
|
||||
}
|
||||
|
||||
private:
|
||||
void RefreshEntropy() {
|
||||
m_entropy = m_rng.GenerateRandomU32();
|
||||
m_bits_available = static_cast<u32>(Common::BitSize<decltype(m_entropy)>());
|
||||
}
|
||||
|
||||
bool GenerateRandomBit() {
|
||||
if (m_bits_available == 0) {
|
||||
this->RefreshEntropy();
|
||||
}
|
||||
|
||||
const bool rnd_bit = (m_entropy & 1) != 0;
|
||||
m_entropy >>= 1;
|
||||
--m_bits_available;
|
||||
return rnd_bit;
|
||||
}
|
||||
|
||||
u64 GenerateRandomBits(u32 num_bits) {
|
||||
u64 result = 0;
|
||||
|
||||
// Iteratively add random bits to our result.
|
||||
while (num_bits > 0) {
|
||||
// Ensure we have random bits to take from.
|
||||
if (m_bits_available == 0) {
|
||||
this->RefreshEntropy();
|
||||
}
|
||||
|
||||
// Determine how many bits to take this round.
|
||||
const auto cur_bits = std::min(num_bits, m_bits_available);
|
||||
|
||||
// Generate mask for our current bits.
|
||||
const u64 mask = (static_cast<u64>(1) << cur_bits) - 1;
|
||||
|
||||
// Add bits to output from our entropy.
|
||||
result <<= cur_bits;
|
||||
result |= (m_entropy & mask);
|
||||
|
||||
// Remove bits from our entropy.
|
||||
m_entropy >>= cur_bits;
|
||||
m_bits_available -= cur_bits;
|
||||
|
||||
// Advance.
|
||||
num_bits -= cur_bits;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
private:
|
||||
Common::TinyMT m_rng;
|
||||
u32 m_entropy{};
|
||||
u32 m_bits_available{};
|
||||
};
|
||||
|
||||
public:
|
||||
static constexpr std::size_t MaxDepth = 4;
|
||||
|
||||
private:
|
||||
std::array<u64*, MaxDepth> bit_storages{};
|
||||
RandomBitGenerator rng{};
|
||||
std::size_t num_bits{};
|
||||
std::size_t used_depths{};
|
||||
static constexpr size_t MaxDepth = 4;
|
||||
|
||||
public:
|
||||
KPageBitmap() = default;
|
||||
|
||||
constexpr std::size_t GetNumBits() const {
|
||||
return num_bits;
|
||||
constexpr size_t GetNumBits() const {
|
||||
return m_num_bits;
|
||||
}
|
||||
constexpr s32 GetHighestDepthIndex() const {
|
||||
return static_cast<s32>(used_depths) - 1;
|
||||
return static_cast<s32>(m_used_depths) - 1;
|
||||
}
|
||||
|
||||
u64* Initialize(u64* storage, std::size_t size) {
|
||||
u64* Initialize(u64* storage, size_t size) {
|
||||
// Initially, everything is un-set.
|
||||
num_bits = 0;
|
||||
m_num_bits = 0;
|
||||
|
||||
// Calculate the needed bitmap depth.
|
||||
used_depths = static_cast<std::size_t>(GetRequiredDepth(size));
|
||||
ASSERT(used_depths <= MaxDepth);
|
||||
m_used_depths = static_cast<size_t>(GetRequiredDepth(size));
|
||||
ASSERT(m_used_depths <= MaxDepth);
|
||||
|
||||
// Set the bitmap pointers.
|
||||
for (s32 depth = this->GetHighestDepthIndex(); depth >= 0; depth--) {
|
||||
bit_storages[depth] = storage;
|
||||
m_bit_storages[depth] = storage;
|
||||
size = Common::AlignUp(size, Common::BitSize<u64>()) / Common::BitSize<u64>();
|
||||
storage += size;
|
||||
m_end_storages[depth] = storage;
|
||||
}
|
||||
|
||||
return storage;
|
||||
|
@ -128,19 +147,19 @@ public:
|
|||
|
||||
if (random) {
|
||||
do {
|
||||
const u64 v = bit_storages[depth][offset];
|
||||
const u64 v = m_bit_storages[depth][offset];
|
||||
if (v == 0) {
|
||||
// If depth is bigger than zero, then a previous level indicated a block was
|
||||
// free.
|
||||
ASSERT(depth == 0);
|
||||
return -1;
|
||||
}
|
||||
offset = offset * Common::BitSize<u64>() + rng.SelectRandomBit(v);
|
||||
offset = offset * Common::BitSize<u64>() + m_rng.SelectRandomBit(v);
|
||||
++depth;
|
||||
} while (depth < static_cast<s32>(used_depths));
|
||||
} while (depth < static_cast<s32>(m_used_depths));
|
||||
} else {
|
||||
do {
|
||||
const u64 v = bit_storages[depth][offset];
|
||||
const u64 v = m_bit_storages[depth][offset];
|
||||
if (v == 0) {
|
||||
// If depth is bigger than zero, then a previous level indicated a block was
|
||||
// free.
|
||||
|
@ -149,28 +168,69 @@ public:
|
|||
}
|
||||
offset = offset * Common::BitSize<u64>() + std::countr_zero(v);
|
||||
++depth;
|
||||
} while (depth < static_cast<s32>(used_depths));
|
||||
} while (depth < static_cast<s32>(m_used_depths));
|
||||
}
|
||||
|
||||
return static_cast<s64>(offset);
|
||||
}
|
||||
|
||||
void SetBit(std::size_t offset) {
|
||||
s64 FindFreeRange(size_t count) {
|
||||
// Check that it is possible to find a range.
|
||||
const u64* const storage_start = m_bit_storages[m_used_depths - 1];
|
||||
const u64* const storage_end = m_end_storages[m_used_depths - 1];
|
||||
|
||||
// If we don't have a storage to iterate (or want more blocks than fit in a single storage),
|
||||
// we can't find a free range.
|
||||
if (!(storage_start < storage_end && count <= Common::BitSize<u64>())) {
|
||||
return -1;
|
||||
}
|
||||
|
||||
// Walk the storages to select a random free range.
|
||||
const size_t options_per_storage = std::max<size_t>(Common::BitSize<u64>() / count, 1);
|
||||
const size_t num_entries = std::max<size_t>(storage_end - storage_start, 1);
|
||||
|
||||
const u64 free_mask = (static_cast<u64>(1) << count) - 1;
|
||||
|
||||
size_t num_valid_options = 0;
|
||||
s64 chosen_offset = -1;
|
||||
for (size_t storage_index = 0; storage_index < num_entries; ++storage_index) {
|
||||
u64 storage = storage_start[storage_index];
|
||||
for (size_t option = 0; option < options_per_storage; ++option) {
|
||||
if ((storage & free_mask) == free_mask) {
|
||||
// We've found a new valid option.
|
||||
++num_valid_options;
|
||||
|
||||
// Select the Kth valid option with probability 1/K. This leads to an overall
|
||||
// uniform distribution.
|
||||
if (num_valid_options == 1 || m_rng.GenerateRandom(num_valid_options) == 0) {
|
||||
// This is our first option, so select it.
|
||||
chosen_offset = storage_index * Common::BitSize<u64>() + option * count;
|
||||
}
|
||||
}
|
||||
storage >>= count;
|
||||
}
|
||||
}
|
||||
|
||||
// Return the random offset we chose.*/
|
||||
return chosen_offset;
|
||||
}
|
||||
|
||||
void SetBit(size_t offset) {
|
||||
this->SetBit(this->GetHighestDepthIndex(), offset);
|
||||
num_bits++;
|
||||
m_num_bits++;
|
||||
}
|
||||
|
||||
void ClearBit(std::size_t offset) {
|
||||
void ClearBit(size_t offset) {
|
||||
this->ClearBit(this->GetHighestDepthIndex(), offset);
|
||||
num_bits--;
|
||||
m_num_bits--;
|
||||
}
|
||||
|
||||
bool ClearRange(std::size_t offset, std::size_t count) {
|
||||
bool ClearRange(size_t offset, size_t count) {
|
||||
s32 depth = this->GetHighestDepthIndex();
|
||||
u64* bits = bit_storages[depth];
|
||||
std::size_t bit_ind = offset / Common::BitSize<u64>();
|
||||
if (count < Common::BitSize<u64>()) {
|
||||
const std::size_t shift = offset % Common::BitSize<u64>();
|
||||
u64* bits = m_bit_storages[depth];
|
||||
size_t bit_ind = offset / Common::BitSize<u64>();
|
||||
if (count < Common::BitSize<u64>()) [[likely]] {
|
||||
const size_t shift = offset % Common::BitSize<u64>();
|
||||
ASSERT(shift + count <= Common::BitSize<u64>());
|
||||
// Check that all the bits are set.
|
||||
const u64 mask = ((u64(1) << count) - 1) << shift;
|
||||
|
@ -189,8 +249,8 @@ public:
|
|||
ASSERT(offset % Common::BitSize<u64>() == 0);
|
||||
ASSERT(count % Common::BitSize<u64>() == 0);
|
||||
// Check that all the bits are set.
|
||||
std::size_t remaining = count;
|
||||
std::size_t i = 0;
|
||||
size_t remaining = count;
|
||||
size_t i = 0;
|
||||
do {
|
||||
if (bits[bit_ind + i++] != ~u64(0)) {
|
||||
return false;
|
||||
|
@ -209,18 +269,18 @@ public:
|
|||
} while (remaining > 0);
|
||||
}
|
||||
|
||||
num_bits -= count;
|
||||
m_num_bits -= count;
|
||||
return true;
|
||||
}
|
||||
|
||||
private:
|
||||
void SetBit(s32 depth, std::size_t offset) {
|
||||
void SetBit(s32 depth, size_t offset) {
|
||||
while (depth >= 0) {
|
||||
std::size_t ind = offset / Common::BitSize<u64>();
|
||||
std::size_t which = offset % Common::BitSize<u64>();
|
||||
size_t ind = offset / Common::BitSize<u64>();
|
||||
size_t which = offset % Common::BitSize<u64>();
|
||||
const u64 mask = u64(1) << which;
|
||||
|
||||
u64* bit = std::addressof(bit_storages[depth][ind]);
|
||||
u64* bit = std::addressof(m_bit_storages[depth][ind]);
|
||||
u64 v = *bit;
|
||||
ASSERT((v & mask) == 0);
|
||||
*bit = v | mask;
|
||||
|
@ -232,13 +292,13 @@ private:
|
|||
}
|
||||
}
|
||||
|
||||
void ClearBit(s32 depth, std::size_t offset) {
|
||||
void ClearBit(s32 depth, size_t offset) {
|
||||
while (depth >= 0) {
|
||||
std::size_t ind = offset / Common::BitSize<u64>();
|
||||
std::size_t which = offset % Common::BitSize<u64>();
|
||||
size_t ind = offset / Common::BitSize<u64>();
|
||||
size_t which = offset % Common::BitSize<u64>();
|
||||
const u64 mask = u64(1) << which;
|
||||
|
||||
u64* bit = std::addressof(bit_storages[depth][ind]);
|
||||
u64* bit = std::addressof(m_bit_storages[depth][ind]);
|
||||
u64 v = *bit;
|
||||
ASSERT((v & mask) != 0);
|
||||
v &= ~mask;
|
||||
|
@ -252,7 +312,7 @@ private:
|
|||
}
|
||||
|
||||
private:
|
||||
static constexpr s32 GetRequiredDepth(std::size_t region_size) {
|
||||
static constexpr s32 GetRequiredDepth(size_t region_size) {
|
||||
s32 depth = 0;
|
||||
while (true) {
|
||||
region_size /= Common::BitSize<u64>();
|
||||
|
@ -264,8 +324,8 @@ private:
|
|||
}
|
||||
|
||||
public:
|
||||
static constexpr std::size_t CalculateManagementOverheadSize(std::size_t region_size) {
|
||||
std::size_t overhead_bits = 0;
|
||||
static constexpr size_t CalculateManagementOverheadSize(size_t region_size) {
|
||||
size_t overhead_bits = 0;
|
||||
for (s32 depth = GetRequiredDepth(region_size) - 1; depth >= 0; depth--) {
|
||||
region_size =
|
||||
Common::AlignUp(region_size, Common::BitSize<u64>()) / Common::BitSize<u64>();
|
||||
|
@ -273,6 +333,13 @@ public:
|
|||
}
|
||||
return overhead_bits * sizeof(u64);
|
||||
}
|
||||
|
||||
private:
|
||||
std::array<u64*, MaxDepth> m_bit_storages{};
|
||||
std::array<u64*, MaxDepth> m_end_storages{};
|
||||
RandomBitGenerator m_rng;
|
||||
size_t m_num_bits{};
|
||||
size_t m_used_depths{};
|
||||
};
|
||||
|
||||
} // namespace Kernel
|
||||
|
|
Reference in New Issue