yuzu-emu
/
yuzu
Archived
1
0
Fork 0

Engines: Implement Accelerate DMA Texture.

This commit is contained in:
Fernando Sahmkow 2022-03-27 05:05:57 +02:00
parent ce8f4da638
commit 8a3411b417
15 changed files with 656 additions and 95 deletions

View File

@ -55,6 +55,19 @@ constexpr u32 NUM_STORAGE_BUFFERS = 16;
constexpr u32 NUM_TEXTURE_BUFFERS = 16;
constexpr u32 NUM_STAGES = 5;
enum class ObtainBufferSynchronize : u32 {
NoSynchronize = 0,
FullSynchronize = 1,
SynchronizeNoDirty = 2,
};
enum class ObtainBufferOperation : u32 {
DoNothing = 0,
MarkAsWritten = 1,
DiscardWrite = 2,
MarkQuery = 3,
};
using UniformBufferSizes = std::array<std::array<u32, NUM_GRAPHICS_UNIFORM_BUFFERS>, NUM_STAGES>;
using ComputeUniformBufferSizes = std::array<u32, NUM_COMPUTE_UNIFORM_BUFFERS>;
@ -191,6 +204,10 @@ public:
bool DMAClear(GPUVAddr src_address, u64 amount, u32 value);
[[nodiscard]] std::pair<Buffer*, u32> ObtainBuffer(GPUVAddr gpu_addr, u32 size,
ObtainBufferSynchronize sync_info,
ObtainBufferOperation post_op);
/// Return true when a CPU region is modified from the GPU
[[nodiscard]] bool IsRegionGpuModified(VAddr addr, size_t size);
@ -641,6 +658,42 @@ bool BufferCache<P>::DMAClear(GPUVAddr dst_address, u64 amount, u32 value) {
return true;
}
template <class P>
std::pair<typename P::Buffer*, u32> BufferCache<P>::ObtainBuffer(GPUVAddr gpu_addr, u32 size,
ObtainBufferSynchronize sync_info,
ObtainBufferOperation post_op) {
const std::optional<VAddr> cpu_addr = gpu_memory->GpuToCpuAddress(gpu_addr);
if (!cpu_addr) {
return {&slot_buffers[NULL_BUFFER_ID], 0};
}
const BufferId buffer_id = FindBuffer(*cpu_addr, size);
Buffer& buffer = slot_buffers[buffer_id];
// synchronize op
switch (sync_info) {
case ObtainBufferSynchronize::FullSynchronize:
SynchronizeBuffer(buffer, *cpu_addr, size);
break;
default:
break;
}
switch (post_op) {
case ObtainBufferOperation::MarkAsWritten:
MarkWrittenBuffer(buffer_id, *cpu_addr, size);
break;
case ObtainBufferOperation::DiscardWrite: {
IntervalType interval{*cpu_addr, size};
ClearDownload(interval);
break;
}
default:
break;
}
return {&buffer, buffer.Offset(*cpu_addr)};
}
template <class P>
void BufferCache<P>::BindGraphicsUniformBuffer(size_t stage, u32 index, GPUVAddr gpu_addr,
u32 size) {

View File

@ -14,7 +14,13 @@
#include "video_core/textures/decoders.h"
MICROPROFILE_DECLARE(GPU_DMAEngine);
MICROPROFILE_DECLARE(GPU_DMAEngineBL);
MICROPROFILE_DECLARE(GPU_DMAEngineLB);
MICROPROFILE_DECLARE(GPU_DMAEngineBB);
MICROPROFILE_DEFINE(GPU_DMAEngine, "GPU", "DMA Engine", MP_RGB(224, 224, 128));
MICROPROFILE_DEFINE(GPU_DMAEngineBL, "GPU", "DMA Engine Block - Linear", MP_RGB(224, 224, 128));
MICROPROFILE_DEFINE(GPU_DMAEngineLB, "GPU", "DMA Engine Linear - Block", MP_RGB(224, 224, 128));
MICROPROFILE_DEFINE(GPU_DMAEngineBB, "GPU", "DMA Engine Block - Block", MP_RGB(224, 224, 128));
namespace Tegra::Engines {
@ -72,6 +78,7 @@ void MaxwellDMA::Launch() {
memory_manager.FlushCaching();
if (!is_src_pitch && !is_dst_pitch) {
// If both the source and the destination are in block layout, assert.
MICROPROFILE_SCOPE(GPU_DMAEngineBB);
CopyBlockLinearToBlockLinear();
ReleaseSemaphore();
return;
@ -87,8 +94,10 @@ void MaxwellDMA::Launch() {
}
} else {
if (!is_src_pitch && is_dst_pitch) {
MICROPROFILE_SCOPE(GPU_DMAEngineBL);
CopyBlockLinearToPitch();
} else {
MICROPROFILE_SCOPE(GPU_DMAEngineLB);
CopyPitchToBlockLinear();
}
}
@ -153,21 +162,35 @@ void MaxwellDMA::Launch() {
}
void MaxwellDMA::CopyBlockLinearToPitch() {
UNIMPLEMENTED_IF(regs.src_params.block_size.width != 0);
UNIMPLEMENTED_IF(regs.src_params.layer != 0);
UNIMPLEMENTED_IF(regs.launch_dma.remap_enable != 0);
const bool is_remapping = regs.launch_dma.remap_enable != 0;
u32 bytes_per_pixel = 1;
DMA::ImageOperand src_operand;
src_operand.bytes_per_pixel = bytes_per_pixel;
src_operand.params = regs.src_params;
src_operand.address = regs.offset_in;
// Optimized path for micro copies.
const size_t dst_size = static_cast<size_t>(regs.pitch_out) * regs.line_count;
if (!is_remapping && dst_size < GOB_SIZE && regs.pitch_out <= GOB_SIZE_X &&
regs.src_params.height > GOB_SIZE_Y) {
FastCopyBlockLinearToPitch();
DMA::BufferOperand dst_operand;
dst_operand.pitch = regs.pitch_out;
dst_operand.width = regs.line_length_in;
dst_operand.height = regs.line_count;
dst_operand.address = regs.offset_out;
DMA::ImageCopy copy_info{};
copy_info.length_x = regs.line_length_in;
copy_info.length_y = regs.line_count;
auto& accelerate = rasterizer->AccessAccelerateDMA();
if (accelerate.ImageToBuffer(copy_info, src_operand, dst_operand)) {
return;
}
UNIMPLEMENTED_IF(regs.src_params.block_size.width != 0);
UNIMPLEMENTED_IF(regs.src_params.block_size.depth != 0);
UNIMPLEMENTED_IF(regs.src_params.block_size.depth == 0 && regs.src_params.depth != 1);
// Deswizzle the input and copy it over.
const Parameters& src_params = regs.src_params;
const DMA::Parameters& src_params = regs.src_params;
const bool is_remapping = regs.launch_dma.remap_enable != 0;
const u32 num_remap_components = regs.remap_const.num_dst_components_minus_one + 1;
const u32 remap_components_size = regs.remap_const.component_size_minus_one + 1;
@ -187,7 +210,7 @@ void MaxwellDMA::CopyBlockLinearToPitch() {
x_offset >>= bpp_shift;
}
const u32 bytes_per_pixel = base_bpp << bpp_shift;
bytes_per_pixel = base_bpp << bpp_shift;
const u32 height = src_params.height;
const u32 depth = src_params.depth;
const u32 block_height = src_params.block_size.height;
@ -195,11 +218,12 @@ void MaxwellDMA::CopyBlockLinearToPitch() {
const size_t src_size =
CalculateSize(true, bytes_per_pixel, width, height, depth, block_height, block_depth);
const size_t dst_size = static_cast<size_t>(regs.pitch_out) * regs.line_count;
read_buffer.resize_destructive(src_size);
write_buffer.resize_destructive(dst_size);
memory_manager.ReadBlock(regs.offset_in, read_buffer.data(), src_size);
memory_manager.ReadBlock(regs.offset_out, write_buffer.data(), dst_size);
memory_manager.ReadBlock(src_operand.address, read_buffer.data(), src_size);
memory_manager.ReadBlockUnsafe(dst_operand.address, write_buffer.data(), dst_size);
UnswizzleSubrect(write_buffer, read_buffer, bytes_per_pixel, width, height, depth, x_offset,
src_params.origin.y, x_elements, regs.line_count, block_height, block_depth,
@ -216,6 +240,24 @@ void MaxwellDMA::CopyPitchToBlockLinear() {
const u32 num_remap_components = regs.remap_const.num_dst_components_minus_one + 1;
const u32 remap_components_size = regs.remap_const.component_size_minus_one + 1;
u32 bytes_per_pixel = 1;
DMA::ImageOperand dst_operand;
dst_operand.bytes_per_pixel = bytes_per_pixel;
dst_operand.params = regs.dst_params;
dst_operand.address = regs.offset_out;
DMA::BufferOperand src_operand;
src_operand.pitch = regs.pitch_in;
src_operand.width = regs.line_length_in;
src_operand.height = regs.line_count;
src_operand.address = regs.offset_in;
DMA::ImageCopy copy_info{};
copy_info.length_x = regs.line_length_in;
copy_info.length_y = regs.line_count;
auto& accelerate = rasterizer->AccessAccelerateDMA();
if (accelerate.BufferToImage(copy_info, src_operand, dst_operand)) {
return;
}
const auto& dst_params = regs.dst_params;
const u32 base_bpp = !is_remapping ? 1U : num_remap_components * remap_components_size;
@ -233,7 +275,7 @@ void MaxwellDMA::CopyPitchToBlockLinear() {
x_offset >>= bpp_shift;
}
const u32 bytes_per_pixel = base_bpp << bpp_shift;
bytes_per_pixel = base_bpp << bpp_shift;
const u32 height = dst_params.height;
const u32 depth = dst_params.depth;
const u32 block_height = dst_params.block_size.height;
@ -260,45 +302,14 @@ void MaxwellDMA::CopyPitchToBlockLinear() {
memory_manager.WriteBlockCached(regs.offset_out, write_buffer.data(), dst_size);
}
void MaxwellDMA::FastCopyBlockLinearToPitch() {
const u32 bytes_per_pixel = 1U;
const size_t src_size = GOB_SIZE;
const size_t dst_size = static_cast<size_t>(regs.pitch_out) * regs.line_count;
u32 pos_x = regs.src_params.origin.x;
u32 pos_y = regs.src_params.origin.y;
const u64 offset = GetGOBOffset(regs.src_params.width, regs.src_params.height, pos_x, pos_y,
regs.src_params.block_size.height, bytes_per_pixel);
const u32 x_in_gob = 64 / bytes_per_pixel;
pos_x = pos_x % x_in_gob;
pos_y = pos_y % 8;
read_buffer.resize_destructive(src_size);
write_buffer.resize_destructive(dst_size);
if (Settings::IsGPULevelExtreme()) {
memory_manager.ReadBlock(regs.offset_in + offset, read_buffer.data(), src_size);
memory_manager.ReadBlock(regs.offset_out, write_buffer.data(), dst_size);
} else {
memory_manager.ReadBlockUnsafe(regs.offset_in + offset, read_buffer.data(), src_size);
memory_manager.ReadBlockUnsafe(regs.offset_out, write_buffer.data(), dst_size);
}
UnswizzleSubrect(write_buffer, read_buffer, bytes_per_pixel, regs.src_params.width,
regs.src_params.height, 1, pos_x, pos_y, regs.line_length_in, regs.line_count,
regs.src_params.block_size.height, regs.src_params.block_size.depth,
regs.pitch_out);
memory_manager.WriteBlockCached(regs.offset_out, write_buffer.data(), dst_size);
}
void MaxwellDMA::CopyBlockLinearToBlockLinear() {
UNIMPLEMENTED_IF(regs.src_params.block_size.width != 0);
const bool is_remapping = regs.launch_dma.remap_enable != 0;
// Deswizzle the input and copy it over.
const Parameters& src = regs.src_params;
const Parameters& dst = regs.dst_params;
const DMA::Parameters& src = regs.src_params;
const DMA::Parameters& dst = regs.dst_params;
const u32 num_remap_components = regs.remap_const.num_dst_components_minus_one + 1;
const u32 remap_components_size = regs.remap_const.component_size_minus_one + 1;

View File

@ -24,6 +24,54 @@ namespace VideoCore {
class RasterizerInterface;
}
namespace Tegra {
namespace DMA {
union Origin {
BitField<0, 16, u32> x;
BitField<16, 16, u32> y;
};
static_assert(sizeof(Origin) == 4);
struct ImageCopy {
u32 length_x{};
u32 length_y{};
};
union BlockSize {
BitField<0, 4, u32> width;
BitField<4, 4, u32> height;
BitField<8, 4, u32> depth;
BitField<12, 4, u32> gob_height;
};
static_assert(sizeof(BlockSize) == 4);
struct Parameters {
BlockSize block_size;
u32 width;
u32 height;
u32 depth;
u32 layer;
Origin origin;
};
static_assert(sizeof(Parameters) == 24);
struct ImageOperand {
u32 bytes_per_pixel;
Parameters params;
GPUVAddr address;
};
struct BufferOperand {
u32 pitch;
u32 width;
u32 height;
GPUVAddr address;
};
} // namespace DMA
} // namespace Tegra
namespace Tegra::Engines {
class AccelerateDMAInterface {
@ -32,6 +80,12 @@ public:
virtual bool BufferCopy(GPUVAddr src_address, GPUVAddr dest_address, u64 amount) = 0;
virtual bool BufferClear(GPUVAddr src_address, u64 amount, u32 value) = 0;
virtual bool ImageToBuffer(const DMA::ImageCopy& copy_info, const DMA::ImageOperand& src,
const DMA::BufferOperand& dst) = 0;
virtual bool BufferToImage(const DMA::ImageCopy& copy_info, const DMA::BufferOperand& src,
const DMA::ImageOperand& dst) = 0;
};
/**
@ -51,30 +105,6 @@ public:
}
};
union BlockSize {
BitField<0, 4, u32> width;
BitField<4, 4, u32> height;
BitField<8, 4, u32> depth;
BitField<12, 4, u32> gob_height;
};
static_assert(sizeof(BlockSize) == 4);
union Origin {
BitField<0, 16, u32> x;
BitField<16, 16, u32> y;
};
static_assert(sizeof(Origin) == 4);
struct Parameters {
BlockSize block_size;
u32 width;
u32 height;
u32 depth;
u32 layer;
Origin origin;
};
static_assert(sizeof(Parameters) == 24);
struct Semaphore {
PackedGPUVAddr address;
u32 payload;
@ -227,8 +257,6 @@ private:
void CopyBlockLinearToBlockLinear();
void FastCopyBlockLinearToPitch();
void ReleaseSemaphore();
void ConsumeSinkImpl() override;
@ -261,17 +289,17 @@ private:
u32 reserved05[0x3f];
PackedGPUVAddr offset_in;
PackedGPUVAddr offset_out;
u32 pitch_in;
u32 pitch_out;
s32 pitch_in;
s32 pitch_out;
u32 line_length_in;
u32 line_count;
u32 reserved06[0xb6];
u32 remap_consta_value;
u32 remap_constb_value;
RemapConst remap_const;
Parameters dst_params;
DMA::Parameters dst_params;
u32 reserved07[0x1];
Parameters src_params;
DMA::Parameters src_params;
u32 reserved08[0x275];
u32 pm_trigger_end;
u32 reserved09[0x3ba];

View File

@ -22,6 +22,14 @@ public:
explicit AccelerateDMA();
bool BufferCopy(GPUVAddr start_address, GPUVAddr end_address, u64 amount) override;
bool BufferClear(GPUVAddr src_address, u64 amount, u32 value) override;
bool ImageToBuffer(const Tegra::DMA::ImageCopy& copy_info, const Tegra::DMA::ImageOperand& src,
const Tegra::DMA::BufferOperand& dst) override {
return false;
}
bool BufferToImage(const Tegra::DMA::ImageCopy& copy_info, const Tegra::DMA::BufferOperand& src,
const Tegra::DMA::ImageOperand& dst) override {
return false;
}
};
class RasterizerNull final : public VideoCore::RasterizerAccelerated,

View File

@ -56,6 +56,16 @@ public:
bool BufferClear(GPUVAddr src_address, u64 amount, u32 value) override;
bool ImageToBuffer(const Tegra::DMA::ImageCopy& copy_info, const Tegra::DMA::ImageOperand& src,
const Tegra::DMA::BufferOperand& dst) override {
return false;
}
bool BufferToImage(const Tegra::DMA::ImageCopy& copy_info, const Tegra::DMA::BufferOperand& src,
const Tegra::DMA::ImageOperand& dst) override {
return false;
}
private:
BufferCache& buffer_cache;
};

View File

@ -172,7 +172,7 @@ RasterizerVulkan::RasterizerVulkan(Core::Frontend::EmuWindow& emu_window_, Tegra
buffer_cache(*this, cpu_memory_, buffer_cache_runtime),
pipeline_cache(*this, device, scheduler, descriptor_pool, update_descriptor_queue,
render_pass_cache, buffer_cache, texture_cache, gpu.ShaderNotify()),
query_cache{*this, device, scheduler}, accelerate_dma{buffer_cache},
query_cache{*this, device, scheduler}, accelerate_dma(buffer_cache, texture_cache, scheduler),
fence_manager(*this, gpu, texture_cache, buffer_cache, query_cache, device, scheduler),
wfi_event(device.GetLogical().CreateEvent()) {
scheduler.SetQueryCache(query_cache);
@ -756,7 +756,9 @@ void RasterizerVulkan::FlushWork() {
draw_counter = 0;
}
AccelerateDMA::AccelerateDMA(BufferCache& buffer_cache_) : buffer_cache{buffer_cache_} {}
AccelerateDMA::AccelerateDMA(BufferCache& buffer_cache_, TextureCache& texture_cache_,
Scheduler& scheduler_)
: buffer_cache{buffer_cache_}, texture_cache{texture_cache_}, scheduler{scheduler_} {}
bool AccelerateDMA::BufferClear(GPUVAddr src_address, u64 amount, u32 value) {
std::scoped_lock lock{buffer_cache.mutex};
@ -768,6 +770,234 @@ bool AccelerateDMA::BufferCopy(GPUVAddr src_address, GPUVAddr dest_address, u64
return buffer_cache.DMACopy(src_address, dest_address, amount);
}
bool AccelerateDMA::ImageToBuffer(const Tegra::DMA::ImageCopy& copy_info,
const Tegra::DMA::ImageOperand& src,
const Tegra::DMA::BufferOperand& dst) {
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
auto query_image = texture_cache.ObtainImage(src, false);
if (!query_image) {
return false;
}
auto* image = query_image->first;
auto [level, base] = query_image->second;
const u32 buffer_size = static_cast<u32>(dst.pitch * dst.height);
const auto [buffer, offset] = buffer_cache.ObtainBuffer(
dst.address, buffer_size, VideoCommon::ObtainBufferSynchronize::FullSynchronize,
VideoCommon::ObtainBufferOperation::MarkAsWritten);
const bool is_rescaled = image->IsRescaled();
if (is_rescaled) {
image->ScaleDown();
}
VkImageSubresourceLayers subresources{
.aspectMask = image->AspectMask(),
.mipLevel = level,
.baseArrayLayer = base,
.layerCount = 1,
};
const u32 bpp = VideoCore::Surface::BytesPerBlock(image->info.format);
const auto convert = [old_bpp = src.bytes_per_pixel, bpp](u32 value) {
return (old_bpp * value) / bpp;
};
const u32 base_x = convert(src.params.origin.x.Value());
const u32 base_y = src.params.origin.y.Value();
const u32 length_x = convert(copy_info.length_x);
const u32 length_y = copy_info.length_y;
VkOffset3D image_offset{
.x = static_cast<s32>(base_x),
.y = static_cast<s32>(base_y),
.z = 0,
};
VkExtent3D image_extent{
.width = length_x,
.height = length_y,
.depth = 1,
};
auto buff_info(dst);
buff_info.pitch = convert(dst.pitch);
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([src_image = image->Handle(), dst_buffer = buffer->Handle(),
buffer_offset = offset, subresources, image_offset, image_extent,
buff_info](vk::CommandBuffer cmdbuf) {
const std::array buffer_copy_info{
VkBufferImageCopy{
.bufferOffset = buffer_offset,
.bufferRowLength = buff_info.pitch,
.bufferImageHeight = buff_info.height,
.imageSubresource = subresources,
.imageOffset = image_offset,
.imageExtent = image_extent,
},
};
const VkImageSubresourceRange range{
.aspectMask = subresources.aspectMask,
.baseMipLevel = subresources.mipLevel,
.levelCount = 1,
.baseArrayLayer = subresources.baseArrayLayer,
.layerCount = 1,
};
static constexpr VkMemoryBarrier WRITE_BARRIER{
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT,
};
const std::array pre_barriers{
VkImageMemoryBarrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = src_image,
.subresourceRange = range,
},
};
const std::array post_barriers{
VkImageMemoryBarrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = 0,
.dstAccessMask = 0,
.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = src_image,
.subresourceRange = range,
},
};
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
0, {}, {}, pre_barriers);
cmdbuf.CopyImageToBuffer(src_image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dst_buffer,
buffer_copy_info);
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
0, WRITE_BARRIER, nullptr, post_barriers);
});
if (is_rescaled) {
image->ScaleUp(true);
}
return true;
}
bool AccelerateDMA::BufferToImage(const Tegra::DMA::ImageCopy& copy_info,
const Tegra::DMA::BufferOperand& src,
const Tegra::DMA::ImageOperand& dst) {
std::scoped_lock lock{buffer_cache.mutex, texture_cache.mutex};
auto query_image = texture_cache.ObtainImage(dst, true);
if (!query_image) {
return false;
}
auto* image = query_image->first;
auto [level, base] = query_image->second;
const u32 buffer_size = static_cast<u32>(src.pitch * src.height);
const auto [buffer, offset] = buffer_cache.ObtainBuffer(
src.address, buffer_size, VideoCommon::ObtainBufferSynchronize::FullSynchronize,
VideoCommon::ObtainBufferOperation::DoNothing);
const bool is_rescaled = image->IsRescaled();
if (is_rescaled) {
image->ScaleDown(true);
}
VkImageSubresourceLayers subresources{
.aspectMask = image->AspectMask(),
.mipLevel = level,
.baseArrayLayer = base,
.layerCount = 1,
};
const u32 bpp = VideoCore::Surface::BytesPerBlock(image->info.format);
const auto convert = [old_bpp = dst.bytes_per_pixel, bpp](u32 value) {
return (old_bpp * value) / bpp;
};
const u32 base_x = convert(dst.params.origin.x.Value());
const u32 base_y = dst.params.origin.y.Value();
const u32 length_x = convert(copy_info.length_x);
const u32 length_y = copy_info.length_y;
VkOffset3D image_offset{
.x = static_cast<s32>(base_x),
.y = static_cast<s32>(base_y),
.z = 0,
};
VkExtent3D image_extent{
.width = length_x,
.height = length_y,
.depth = 1,
};
auto buff_info(src);
buff_info.pitch = convert(src.pitch);
scheduler.RequestOutsideRenderPassOperationContext();
scheduler.Record([dst_image = image->Handle(), src_buffer = buffer->Handle(),
buffer_offset = offset, subresources, image_offset, image_extent,
buff_info](vk::CommandBuffer cmdbuf) {
const std::array buffer_copy_info{
VkBufferImageCopy{
.bufferOffset = buffer_offset,
.bufferRowLength = buff_info.pitch,
.bufferImageHeight = buff_info.height,
.imageSubresource = subresources,
.imageOffset = image_offset,
.imageExtent = image_extent,
},
};
const VkImageSubresourceRange range{
.aspectMask = subresources.aspectMask,
.baseMipLevel = subresources.mipLevel,
.levelCount = 1,
.baseArrayLayer = subresources.baseArrayLayer,
.layerCount = 1,
};
static constexpr VkMemoryBarrier READ_BARRIER{
.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT,
.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_TRANSFER_WRITE_BIT,
};
const std::array pre_barriers{
VkImageMemoryBarrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_TRANSFER_WRITE_BIT,
.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT,
.oldLayout = VK_IMAGE_LAYOUT_GENERAL,
.newLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = dst_image,
.subresourceRange = range,
},
};
const std::array post_barriers{
VkImageMemoryBarrier{
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = nullptr,
.srcAccessMask = 0,
.dstAccessMask = 0,
.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
.newLayout = VK_IMAGE_LAYOUT_GENERAL,
.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED,
.image = dst_image,
.subresourceRange = range,
},
};
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
0, READ_BARRIER, {}, pre_barriers);
cmdbuf.CopyBufferToImage(src_buffer, dst_image, VK_IMAGE_LAYOUT_GENERAL, buffer_copy_info);
cmdbuf.PipelineBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
0, nullptr, nullptr, post_barriers);
});
if (is_rescaled) {
image->ScaleUp();
}
return true;
}
void RasterizerVulkan::UpdateDynamicStates() {
auto& regs = maxwell3d->regs;
UpdateViewportsState(regs);

View File

@ -45,14 +45,23 @@ class StateTracker;
class AccelerateDMA : public Tegra::Engines::AccelerateDMAInterface {
public:
explicit AccelerateDMA(BufferCache& buffer_cache);
explicit AccelerateDMA(BufferCache& buffer_cache, TextureCache& texture_cache,
Scheduler& scheduler);
bool BufferCopy(GPUVAddr start_address, GPUVAddr end_address, u64 amount) override;
bool BufferClear(GPUVAddr src_address, u64 amount, u32 value) override;
bool ImageToBuffer(const Tegra::DMA::ImageCopy& copy_info, const Tegra::DMA::ImageOperand& src,
const Tegra::DMA::BufferOperand& dst) override;
bool BufferToImage(const Tegra::DMA::ImageCopy& copy_info, const Tegra::DMA::BufferOperand& src,
const Tegra::DMA::ImageOperand& dst) override;
private:
BufferCache& buffer_cache;
TextureCache& texture_cache;
Scheduler& scheduler;
};
class RasterizerVulkan final : public VideoCore::RasterizerAccelerated,

View File

@ -864,13 +864,19 @@ void TextureCacheRuntime::ReinterpretImage(Image& dst, Image& src,
const VkImageAspectFlags src_aspect_mask = src.AspectMask();
const VkImageAspectFlags dst_aspect_mask = dst.AspectMask();
std::ranges::transform(copies, vk_in_copies.begin(), [src_aspect_mask](const auto& copy) {
return MakeBufferImageCopy(copy, true, src_aspect_mask);
const auto bpp_in = BytesPerBlock(src.info.format) / DefaultBlockWidth(src.info.format);
const auto bpp_out = BytesPerBlock(dst.info.format) / DefaultBlockWidth(dst.info.format);
std::ranges::transform(copies, vk_in_copies.begin(),
[src_aspect_mask, bpp_in, bpp_out](const auto& copy) {
auto copy2 = copy;
copy2.src_offset.x = (bpp_out * copy.src_offset.x) / bpp_in;
copy2.extent.width = (bpp_out * copy.extent.width) / bpp_in;
return MakeBufferImageCopy(copy2, true, src_aspect_mask);
});
std::ranges::transform(copies, vk_out_copies.begin(), [dst_aspect_mask](const auto& copy) {
return MakeBufferImageCopy(copy, false, dst_aspect_mask);
});
const u32 img_bpp = BytesPerBlock(src.info.format);
const u32 img_bpp = BytesPerBlock(dst.info.format);
size_t total_size = 0;
for (const auto& copy : copies) {
total_size += copy.extent.width * copy.extent.height * copy.extent.depth * img_bpp;

View File

@ -216,10 +216,51 @@ ImageInfo::ImageInfo(const Tegra::Engines::Fermi2D::Surface& config) noexcept {
.height = config.height,
.depth = 1,
};
rescaleable = block.depth == 0;
rescaleable &= size.height > 256;
rescaleable = block.depth == 0 && size.height > 256;
downscaleable = size.height > 512;
}
}
static PixelFormat ByteSizeToFormat(u32 bytes_per_pixel) {
switch (bytes_per_pixel) {
case 1:
return PixelFormat::R8_UINT;
case 2:
return PixelFormat::R8G8_UINT;
case 4:
return PixelFormat::A8B8G8R8_UINT;
case 8:
return PixelFormat::R16G16B16A16_UINT;
case 16:
return PixelFormat::R32G32B32A32_UINT;
default:
UNIMPLEMENTED();
return PixelFormat::Invalid;
}
}
ImageInfo::ImageInfo(const Tegra::DMA::ImageOperand& config) noexcept {
const u32 bytes_per_pixel = config.bytes_per_pixel;
format = ByteSizeToFormat(bytes_per_pixel);
type = config.params.block_size.depth > 0 ? ImageType::e3D : ImageType::e2D;
num_samples = 1;
block = Extent3D{
.width = config.params.block_size.width,
.height = config.params.block_size.height,
.depth = config.params.block_size.depth,
};
size = Extent3D{
.width = config.params.width,
.height = config.params.height,
.depth = config.params.depth,
};
tile_width_spacing = 0;
resources.levels = 1;
resources.layers = 1;
layer_stride = CalculateLayerStride(*this);
maybe_unaligned_layer_stride = CalculateLayerSize(*this);
rescaleable = block.depth == 0 && size.height > 256;
downscaleable = size.height > 512;
}
} // namespace VideoCommon

View File

@ -5,6 +5,7 @@
#include "video_core/engines/fermi_2d.h"
#include "video_core/engines/maxwell_3d.h"
#include "video_core/engines/maxwell_dma.h"
#include "video_core/surface.h"
#include "video_core/texture_cache/types.h"
@ -19,6 +20,7 @@ struct ImageInfo {
explicit ImageInfo(const Tegra::Engines::Maxwell3D::Regs& regs, size_t index) noexcept;
explicit ImageInfo(const Tegra::Engines::Maxwell3D::Regs& regs) noexcept;
explicit ImageInfo(const Tegra::Engines::Fermi2D::Surface& config) noexcept;
explicit ImageInfo(const Tegra::DMA::ImageOperand& config) noexcept;
PixelFormat format = PixelFormat::Invalid;
ImageType type = ImageType::e1D;

View File

@ -1358,6 +1358,75 @@ std::optional<typename TextureCache<P>::BlitImages> TextureCache<P>::GetBlitImag
}};
}
template <class P>
ImageId TextureCache<P>::FindDMAImage(const ImageInfo& info, GPUVAddr gpu_addr) {
std::optional<VAddr> cpu_addr = gpu_memory->GpuToCpuAddress(gpu_addr);
if (!cpu_addr) {
cpu_addr = gpu_memory->GpuToCpuAddress(gpu_addr, CalculateGuestSizeInBytes(info));
if (!cpu_addr) {
return ImageId{};
}
}
ImageId image_id{};
boost::container::small_vector<ImageId, 1> image_ids;
const auto lambda = [&](ImageId existing_image_id, ImageBase& existing_image) {
if (True(existing_image.flags & ImageFlagBits::Remapped)) {
return false;
}
if (info.type == ImageType::Linear || existing_image.info.type == ImageType::Linear)
[[unlikely]] {
const bool strict_size = True(existing_image.flags & ImageFlagBits::Strong);
const ImageInfo& existing = existing_image.info;
if (existing_image.gpu_addr == gpu_addr && existing.type == info.type &&
existing.pitch == info.pitch &&
IsPitchLinearSameSize(existing, info, strict_size) &&
IsViewCompatible(existing.format, info.format, false, true)) {
image_id = existing_image_id;
image_ids.push_back(existing_image_id);
return true;
}
} else if (IsSubCopy(info, existing_image, gpu_addr)) {
image_id = existing_image_id;
image_ids.push_back(existing_image_id);
return true;
}
return false;
};
ForEachImageInRegion(*cpu_addr, CalculateGuestSizeInBytes(info), lambda);
if (image_ids.size() <= 1) [[likely]] {
return image_id;
}
auto image_ids_compare = [this](ImageId a, ImageId b) {
auto& image_a = slot_images[a];
auto& image_b = slot_images[b];
return image_a.modification_tick < image_b.modification_tick;
};
return *std::ranges::max_element(image_ids, image_ids_compare);
}
template <class P>
std::optional<std::pair<typename TextureCache<P>::Image*, std::pair<u32, u32>>>
TextureCache<P>::ObtainImage(const Tegra::DMA::ImageOperand& operand, bool mark_as_modified) {
ImageInfo dst_info(operand);
ImageId dst_id = FindDMAImage(dst_info, operand.address);
if (!dst_id) {
return std::nullopt;
}
auto& image = slot_images[dst_id];
auto base = image.TryFindBase(operand.address);
if (!base) {
return std::nullopt;
}
if (False(image.flags & ImageFlagBits::GpuModified)) {
// No need to waste time on an image that's synced with guest
return std::nullopt;
}
PrepareImage(dst_id, mark_as_modified, false);
auto& new_image = slot_images[dst_id];
lru_cache.Touch(new_image.lru_index, frame_tick);
return std::make_pair(&new_image, std::make_pair(base->level, base->layer));
}
template <class P>
SamplerId TextureCache<P>::FindSampler(const TSCEntry& config) {
if (std::ranges::all_of(config.raw, [](u64 value) { return value == 0; })) {

View File

@ -209,6 +209,9 @@ public:
/// Pop asynchronous downloads
void PopAsyncFlushes();
[[nodiscard]] std::optional<std::pair<Image*, std::pair<u32, u32>>> ObtainImage(
const Tegra::DMA::ImageOperand& operand, bool mark_as_modified);
/// Return true when a CPU region is modified from the GPU
[[nodiscard]] bool IsRegionGpuModified(VAddr addr, size_t size);
@ -300,6 +303,8 @@ private:
/// Remove joined images from the cache
[[nodiscard]] ImageId JoinImages(const ImageInfo& info, GPUVAddr gpu_addr, VAddr cpu_addr);
[[nodiscard]] ImageId FindDMAImage(const ImageInfo& info, GPUVAddr gpu_addr);
/// Return a blit image pair from the given guest blit parameters
[[nodiscard]] std::optional<BlitImages> GetBlitImages(
const Tegra::Engines::Fermi2D::Surface& dst, const Tegra::Engines::Fermi2D::Surface& src,

View File

@ -54,6 +54,7 @@ enum class RelaxedOptions : u32 {
Format = 1 << 1,
Samples = 1 << 2,
ForceBrokenViews = 1 << 3,
FormatBpp = 1 << 4,
};
DECLARE_ENUM_FLAG_OPERATORS(RelaxedOptions)

View File

@ -743,6 +743,44 @@ std::vector<ImageCopy> MakeShrinkImageCopies(const ImageInfo& dst, const ImageIn
return copies;
}
std::vector<ImageCopy> MakeReinterpretImageCopies(const ImageInfo& src, u32 up_scale,
u32 down_shift) {
std::vector<ImageCopy> copies;
copies.reserve(src.resources.levels);
const bool is_3d = src.type == ImageType::e3D;
for (s32 level = 0; level < src.resources.levels; ++level) {
ImageCopy& copy = copies.emplace_back();
copy.src_subresource = SubresourceLayers{
.base_level = level,
.base_layer = 0,
.num_layers = src.resources.layers,
};
copy.dst_subresource = SubresourceLayers{
.base_level = level,
.base_layer = 0,
.num_layers = src.resources.layers,
};
copy.src_offset = Offset3D{
.x = 0,
.y = 0,
.z = 0,
};
copy.dst_offset = Offset3D{
.x = 0,
.y = 0,
.z = 0,
};
const Extent3D mip_size = AdjustMipSize(src.size, level);
copy.extent = AdjustSamplesSize(mip_size, src.num_samples);
if (is_3d) {
copy.extent.depth = src.size.depth;
}
copy.extent.width = std::max<u32>((copy.extent.width * up_scale) >> down_shift, 1);
copy.extent.height = std::max<u32>((copy.extent.height * up_scale) >> down_shift, 1);
}
return copies;
}
bool IsValidEntry(const Tegra::MemoryManager& gpu_memory, const TICEntry& config) {
const GPUVAddr address = config.Address();
if (address == 0) {
@ -999,6 +1037,20 @@ bool IsBlockLinearSizeCompatible(const ImageInfo& lhs, const ImageInfo& rhs, u32
}
}
bool IsBlockLinearSizeCompatibleBPPRelaxed(const ImageInfo& lhs, const ImageInfo& rhs,
u32 lhs_level, u32 rhs_level) noexcept {
ASSERT(lhs.type != ImageType::Linear);
ASSERT(rhs.type != ImageType::Linear);
const auto lhs_bpp = BytesPerBlock(lhs.format);
const auto rhs_bpp = BytesPerBlock(rhs.format);
const Extent3D lhs_size = AdjustMipSize(lhs.size, lhs_level);
const Extent3D rhs_size = AdjustMipSize(rhs.size, rhs_level);
return Common::AlignUpLog2(lhs_size.width * lhs_bpp, GOB_SIZE_X_SHIFT) ==
Common::AlignUpLog2(rhs_size.width * rhs_bpp, GOB_SIZE_X_SHIFT) &&
Common::AlignUpLog2(lhs_size.height, GOB_SIZE_Y_SHIFT) ==
Common::AlignUpLog2(rhs_size.height, GOB_SIZE_Y_SHIFT);
}
bool IsPitchLinearSameSize(const ImageInfo& lhs, const ImageInfo& rhs, bool strict_size) noexcept {
ASSERT(lhs.type == ImageType::Linear);
ASSERT(rhs.type == ImageType::Linear);
@ -1073,7 +1125,8 @@ std::optional<SubresourceBase> FindSubresource(const ImageInfo& candidate, const
// Format checking is relaxed, but we still have to check for matching bytes per block.
// This avoids creating a view for blits on UE4 titles where formats with different bytes
// per block are aliased.
if (BytesPerBlock(existing.format) != BytesPerBlock(candidate.format)) {
if (BytesPerBlock(existing.format) != BytesPerBlock(candidate.format) &&
False(options & RelaxedOptions::FormatBpp)) {
return std::nullopt;
}
} else {
@ -1088,11 +1141,9 @@ std::optional<SubresourceBase> FindSubresource(const ImageInfo& candidate, const
if (existing.type != candidate.type) {
return std::nullopt;
}
if (False(options & RelaxedOptions::Samples)) {
if (existing.num_samples != candidate.num_samples) {
if (False(options & RelaxedOptions::Samples) && existing.num_samples != candidate.num_samples) {
return std::nullopt;
}
}
if (existing.resources.levels < candidate.resources.levels + base->level) {
return std::nullopt;
}
@ -1101,14 +1152,16 @@ std::optional<SubresourceBase> FindSubresource(const ImageInfo& candidate, const
if (mip_depth < candidate.size.depth + base->layer) {
return std::nullopt;
}
} else {
if (existing.resources.layers < candidate.resources.layers + base->layer) {
} else if (existing.resources.layers < candidate.resources.layers + base->layer) {
return std::nullopt;
}
}
const bool strict_size = False(options & RelaxedOptions::Size);
if (!IsBlockLinearSizeCompatible(existing, candidate, base->level, 0, strict_size)) {
if (False(options & RelaxedOptions::FormatBpp)) {
return std::nullopt;
} else if (!IsBlockLinearSizeCompatibleBPPRelaxed(existing, candidate, base->level, 0)) {
return std::nullopt;
}
}
// TODO: compare block sizes
return base;
@ -1120,6 +1173,31 @@ bool IsSubresource(const ImageInfo& candidate, const ImageBase& image, GPUVAddr
.has_value();
}
bool IsSubCopy(const ImageInfo& candidate, const ImageBase& image, GPUVAddr candidate_addr) {
const std::optional<SubresourceBase> base = image.TryFindBase(candidate_addr);
if (!base) {
return false;
}
const ImageInfo& existing = image.info;
if (existing.resources.levels < candidate.resources.levels + base->level) {
return false;
}
if (existing.type == ImageType::e3D) {
const u32 mip_depth = std::max(1U, existing.size.depth << base->level);
if (mip_depth < candidate.size.depth + base->layer) {
return false;
}
} else {
if (existing.resources.layers < candidate.resources.layers + base->layer) {
return false;
}
}
if (!IsBlockLinearSizeCompatibleBPPRelaxed(existing, candidate, base->level, 0)) {
return false;
}
return true;
}
void DeduceBlitImages(ImageInfo& dst_info, ImageInfo& src_info, const ImageBase* dst,
const ImageBase* src) {
const auto original_dst_format = dst_info.format;

View File

@ -56,6 +56,10 @@ struct OverlapResult {
SubresourceBase base, u32 up_scale = 1,
u32 down_shift = 0);
[[nodiscard]] std::vector<ImageCopy> MakeReinterpretImageCopies(const ImageInfo& src,
u32 up_scale = 1,
u32 down_shift = 0);
[[nodiscard]] bool IsValidEntry(const Tegra::MemoryManager& gpu_memory, const TICEntry& config);
[[nodiscard]] std::vector<BufferImageCopy> UnswizzleImage(Tegra::MemoryManager& gpu_memory,
@ -88,6 +92,9 @@ void SwizzleImage(Tegra::MemoryManager& gpu_memory, GPUVAddr gpu_addr, const Ima
[[nodiscard]] bool IsPitchLinearSameSize(const ImageInfo& lhs, const ImageInfo& rhs,
bool strict_size) noexcept;
[[nodiscard]] bool IsBlockLinearSizeCompatibleBPPRelaxed(const ImageInfo& lhs, const ImageInfo& rhs,
u32 lhs_level, u32 rhs_level) noexcept;
[[nodiscard]] std::optional<OverlapResult> ResolveOverlap(const ImageInfo& new_info,
GPUVAddr gpu_addr, VAddr cpu_addr,
const ImageBase& overlap,
@ -106,6 +113,9 @@ void SwizzleImage(Tegra::MemoryManager& gpu_memory, GPUVAddr gpu_addr, const Ima
GPUVAddr candidate_addr, RelaxedOptions options, bool broken_views,
bool native_bgr);
[[nodiscard]] bool IsSubCopy(const ImageInfo& candidate, const ImageBase& image,
GPUVAddr candidate_addr);
void DeduceBlitImages(ImageInfo& dst_info, ImageInfo& src_info, const ImageBase* dst,
const ImageBase* src);