yuzu-emu
/
yuzu
Archived
1
0
Fork 0

SwRasterizer: Implement primary fragment color.

This commit is contained in:
Subv 2017-06-09 13:14:55 -05:00 committed by wwylele
parent 669757a97b
commit b2f472a2b1
1 changed files with 114 additions and 5 deletions

View File

@ -13,6 +13,7 @@
#include "common/logging/log.h"
#include "common/math_util.h"
#include "common/microprofile.h"
#include "common/quaternion.h"
#include "common/vector_math.h"
#include "core/hw/gpu.h"
#include "core/memory.h"
@ -114,6 +115,86 @@ static std::tuple<float24, float24, PAddr> ConvertCubeCoord(float24 u, float24 v
return std::make_tuple(x / z * half + half, y / z * half + half, addr);
}
std::tuple<Math::Vec4<u8>, Math::Vec4<u8>> ComputeFragmentsColors(const Math::Quaternion<float>& normquat, const Math::Vec3<float>& view) {
const auto& lighting = g_state.regs.lighting;
if (lighting.disable)
return {{}, {}};
// TODO(Subv): Bump mapping
Math::Vec3<float> surface_normal = {0.0f, 0.0f, 1.0f};
if (lighting.config0.bump_mode != LightingRegs::LightingBumpMode::None) {
LOG_CRITICAL(HW_GPU, "unimplemented bump mapping");
UNIMPLEMENTED();
}
// TODO(Subv): Do we need to normalize the quaternion here?
auto normal = Math::QuaternionRotate(normquat, surface_normal);
Math::Vec3<float> light_vector = {};
Math::Vec3<float> diffuse_sum = {};
// TODO(Subv): Calculate specular
Math::Vec3<float> specular_sum = {};
for (unsigned light_index = 0; light_index <= lighting.max_light_index; ++light_index) {
unsigned num = lighting.light_enable.GetNum(light_index);
const auto& light_config = g_state.regs.lighting.light[num];
Math::Vec3<float> position = {float16::FromRaw(light_config.x).ToFloat32(), float16::FromRaw(light_config.y).ToFloat32(), float16::FromRaw(light_config.z).ToFloat32()};
if (light_config.config.directional)
light_vector = position;
else
light_vector = position + view;
light_vector.Normalize();
auto dot_product = Math::Dot(light_vector, normal);
if (light_config.config.two_sided_diffuse)
dot_product = std::abs(dot_product);
else
dot_product = std::max(dot_product, 0.0f);
float dist_atten = 1.0f;
if (!lighting.IsDistAttenDisabled(num)) {
auto distance = (-view - position).Length();
float scale = Pica::float20::FromRaw(light_config.dist_atten_scale).ToFloat32();
float bias = Pica::float20::FromRaw(light_config.dist_atten_scale).ToFloat32();
size_t lut = static_cast<size_t>(LightingRegs::LightingSampler::DistanceAttenuation) + num;
float sample_loc = scale * distance + bias;
unsigned index_i = static_cast<unsigned>(MathUtil::Clamp(floor(sample_loc * 256), 0.0f, 1.0f));
float index_f = sample_loc - index_i;
ASSERT_MSG(lut < g_state.lighting.luts.size(), "Out of range lut");
float lut_value = g_state.lighting.luts[lut][index_i].ToFloat();
float lut_diff = g_state.lighting.luts[lut][index_i].DiffToFloat();
dist_atten = lut_value + lut_diff * index_f;
}
auto diffuse = light_config.diffuse.ToVec3f() * dot_product + light_config.ambient.ToVec3f();
diffuse_sum += diffuse * dist_atten;
}
diffuse_sum += lighting.global_ambient.ToVec3f();
return {
Math::MakeVec<float>(MathUtil::Clamp(diffuse_sum.x, 0.0f, 1.0f) * 255, MathUtil::Clamp(diffuse_sum.y, 0.0f, 1.0f) * 255, MathUtil::Clamp(diffuse_sum.z, 0.0f, 1.0f) * 255, 255).Cast<u8>(),
Math::MakeVec<float>(MathUtil::Clamp(specular_sum.x, 0.0f, 1.0f) * 255, MathUtil::Clamp(specular_sum.y, 0.0f, 1.0f) * 255, MathUtil::Clamp(specular_sum.z, 0.0f, 1.0f) * 255, 255).Cast<u8>()
};
}
static bool AreQuaternionsOpposite(Math::Vec4<Pica::float24> qa, Math::Vec4<Pica::float24> qb) {
Math::Vec4f a{ qa.x.ToFloat32(), qa.y.ToFloat32(), qa.z.ToFloat32(), qa.w.ToFloat32() };
Math::Vec4f b{ qb.x.ToFloat32(), qb.y.ToFloat32(), qb.z.ToFloat32(), qb.w.ToFloat32() };
return (Math::Dot(a, b) < 0.f);
}
MICROPROFILE_DEFINE(GPU_Rasterization, "GPU", "Rasterization", MP_RGB(50, 50, 240));
/**
@ -207,6 +288,15 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve
int bias2 =
IsRightSideOrFlatBottomEdge(vtxpos[2].xy(), vtxpos[0].xy(), vtxpos[1].xy()) ? -1 : 0;
// Flip the quaternions if they are opposite to prevent interpolating them over the wrong direction.
auto v1_quat = v1.quat;
auto v2_quat = v2.quat;
if (AreQuaternionsOpposite(v0.quat, v1.quat))
v1_quat = v1_quat * float24::FromFloat32(-1.0f);
if (AreQuaternionsOpposite(v0.quat, v2.quat))
v2_quat = v2_quat * float24::FromFloat32(-1.0f);
auto w_inverse = Math::MakeVec(v0.pos.w, v1.pos.w, v2.pos.w);
auto textures = regs.texturing.GetTextures();
@ -305,6 +395,21 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve
255),
};
Math::Quaternion<float> normquat{
{
GetInterpolatedAttribute(v0.quat.x, v1_quat.x, v2_quat.x).ToFloat32(),
GetInterpolatedAttribute(v0.quat.y, v1_quat.y, v2_quat.y).ToFloat32(),
GetInterpolatedAttribute(v0.quat.z, v1_quat.z, v2_quat.z).ToFloat32()
},
GetInterpolatedAttribute(v0.quat.w, v1_quat.w, v2_quat.w).ToFloat32(),
};
Math::Vec3<float> fragment_position{
GetInterpolatedAttribute(v0.view.x, v1.view.x, v2.view.x).ToFloat32(),
GetInterpolatedAttribute(v0.view.y, v1.view.y, v2.view.y).ToFloat32(),
GetInterpolatedAttribute(v0.view.z, v1.view.z, v2.view.z).ToFloat32()
};
Math::Vec2<float24> uv[3];
uv[0].u() = GetInterpolatedAttribute(v0.tc0.u(), v1.tc0.u(), v2.tc0.u());
uv[0].v() = GetInterpolatedAttribute(v0.tc0.v(), v1.tc0.v(), v2.tc0.v());
@ -419,6 +524,11 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve
regs.texturing.tev_combiner_buffer_color.a,
};
Math::Vec4<u8> primary_fragment_color;
Math::Vec4<u8> secondary_fragment_color;
std::tie(primary_fragment_color, secondary_fragment_color) = ComputeFragmentsColors(normquat, fragment_position);
for (unsigned tev_stage_index = 0; tev_stage_index < tev_stages.size();
++tev_stage_index) {
const auto& tev_stage = tev_stages[tev_stage_index];
@ -427,14 +537,13 @@ static void ProcessTriangleInternal(const Vertex& v0, const Vertex& v1, const Ve
auto GetSource = [&](Source source) -> Math::Vec4<u8> {
switch (source) {
case Source::PrimaryColor:
// HACK: Until we implement fragment lighting, use primary_color
case Source::PrimaryFragmentColor:
return primary_color;
// HACK: Until we implement fragment lighting, use zero
case Source::PrimaryFragmentColor:
return primary_fragment_color;
case Source::SecondaryFragmentColor:
return {0, 0, 0, 0};
return secondary_fragment_color;
case Source::Texture0:
return texture_color[0];