yuzu-emu
/
yuzu
Archived
1
0
Fork 0

kernel: convert GlobalSchedulerContext, KAddressArbiter, KScopedSchedulerLockAndSleep, KThreadQueue to new style

This commit is contained in:
Liam 2023-03-06 19:45:40 -05:00
parent 54c359d1e3
commit d24ab14126
8 changed files with 130 additions and 142 deletions

View File

@ -12,20 +12,19 @@
namespace Kernel {
GlobalSchedulerContext::GlobalSchedulerContext(KernelCore& kernel_)
: kernel{kernel_}, scheduler_lock{kernel_} {}
GlobalSchedulerContext::GlobalSchedulerContext(KernelCore& kernel)
: m_kernel{kernel}, m_scheduler_lock{kernel} {}
GlobalSchedulerContext::~GlobalSchedulerContext() = default;
void GlobalSchedulerContext::AddThread(KThread* thread) {
std::scoped_lock lock{global_list_guard};
thread_list.push_back(thread);
std::scoped_lock lock{m_global_list_guard};
m_thread_list.push_back(thread);
}
void GlobalSchedulerContext::RemoveThread(KThread* thread) {
std::scoped_lock lock{global_list_guard};
thread_list.erase(std::remove(thread_list.begin(), thread_list.end(), thread),
thread_list.end());
std::scoped_lock lock{m_global_list_guard};
std::erase(m_thread_list, thread);
}
void GlobalSchedulerContext::PreemptThreads() {
@ -38,37 +37,37 @@ void GlobalSchedulerContext::PreemptThreads() {
63,
};
ASSERT(IsLocked());
ASSERT(KScheduler::IsSchedulerLockedByCurrentThread(m_kernel));
for (u32 core_id = 0; core_id < Core::Hardware::NUM_CPU_CORES; core_id++) {
const u32 priority = preemption_priorities[core_id];
KScheduler::RotateScheduledQueue(kernel, core_id, priority);
KScheduler::RotateScheduledQueue(m_kernel, core_id, priority);
}
}
bool GlobalSchedulerContext::IsLocked() const {
return scheduler_lock.IsLockedByCurrentThread();
return m_scheduler_lock.IsLockedByCurrentThread();
}
void GlobalSchedulerContext::RegisterDummyThreadForWakeup(KThread* thread) {
ASSERT(IsLocked());
ASSERT(this->IsLocked());
woken_dummy_threads.insert(thread);
m_woken_dummy_threads.insert(thread);
}
void GlobalSchedulerContext::UnregisterDummyThreadForWakeup(KThread* thread) {
ASSERT(IsLocked());
ASSERT(this->IsLocked());
woken_dummy_threads.erase(thread);
m_woken_dummy_threads.erase(thread);
}
void GlobalSchedulerContext::WakeupWaitingDummyThreads() {
ASSERT(IsLocked());
ASSERT(this->IsLocked());
for (auto* thread : woken_dummy_threads) {
for (auto* thread : m_woken_dummy_threads) {
thread->DummyThreadEndWait();
}
woken_dummy_threads.clear();
m_woken_dummy_threads.clear();
}
} // namespace Kernel

View File

@ -33,7 +33,7 @@ class GlobalSchedulerContext final {
public:
using LockType = KAbstractSchedulerLock<KScheduler>;
explicit GlobalSchedulerContext(KernelCore& kernel_);
explicit GlobalSchedulerContext(KernelCore& kernel);
~GlobalSchedulerContext();
/// Adds a new thread to the scheduler
@ -43,8 +43,9 @@ public:
void RemoveThread(KThread* thread);
/// Returns a list of all threads managed by the scheduler
/// This is only safe to iterate while holding the scheduler lock
[[nodiscard]] const std::vector<KThread*>& GetThreadList() const {
return thread_list;
return m_thread_list;
}
/**
@ -64,29 +65,25 @@ public:
void WakeupWaitingDummyThreads();
[[nodiscard]] LockType& SchedulerLock() {
return scheduler_lock;
}
[[nodiscard]] const LockType& SchedulerLock() const {
return scheduler_lock;
return m_scheduler_lock;
}
private:
friend class KScopedSchedulerLock;
friend class KScopedSchedulerLockAndSleep;
KernelCore& kernel;
KernelCore& m_kernel;
std::atomic_bool scheduler_update_needed{};
KSchedulerPriorityQueue priority_queue;
LockType scheduler_lock;
std::atomic_bool m_scheduler_update_needed{};
KSchedulerPriorityQueue m_priority_queue;
LockType m_scheduler_lock;
/// Lists dummy threads pending wakeup on lock release
std::set<KThread*> woken_dummy_threads;
std::set<KThread*> m_woken_dummy_threads;
/// Lists all thread ids that aren't deleted/etc.
std::vector<KThread*> thread_list;
std::mutex global_list_guard;
std::vector<KThread*> m_thread_list;
std::mutex m_global_list_guard;
};
} // namespace Kernel

View File

@ -14,8 +14,8 @@
namespace Kernel {
KAddressArbiter::KAddressArbiter(Core::System& system_)
: system{system_}, kernel{system.Kernel()} {}
KAddressArbiter::KAddressArbiter(Core::System& system)
: m_system{system}, m_kernel{system.Kernel()} {}
KAddressArbiter::~KAddressArbiter() = default;
namespace {
@ -90,8 +90,8 @@ bool UpdateIfEqual(Core::System& system, s32* out, VAddr address, s32 value, s32
class ThreadQueueImplForKAddressArbiter final : public KThreadQueue {
public:
explicit ThreadQueueImplForKAddressArbiter(KernelCore& kernel_, KAddressArbiter::ThreadTree* t)
: KThreadQueue(kernel_), m_tree(t) {}
explicit ThreadQueueImplForKAddressArbiter(KernelCore& kernel, KAddressArbiter::ThreadTree* t)
: KThreadQueue(kernel), m_tree(t) {}
void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task) override {
// If the thread is waiting on an address arbiter, remove it from the tree.
@ -105,7 +105,7 @@ public:
}
private:
KAddressArbiter::ThreadTree* m_tree;
KAddressArbiter::ThreadTree* m_tree{};
};
} // namespace
@ -114,10 +114,10 @@ Result KAddressArbiter::Signal(VAddr addr, s32 count) {
// Perform signaling.
s32 num_waiters{};
{
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
auto it = thread_tree.nfind_key({addr, -1});
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
auto it = m_tree.nfind_key({addr, -1});
while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetAddressArbiterKey() == addr)) {
// End the thread's wait.
KThread* target_thread = std::addressof(*it);
@ -126,31 +126,27 @@ Result KAddressArbiter::Signal(VAddr addr, s32 count) {
ASSERT(target_thread->IsWaitingForAddressArbiter());
target_thread->ClearAddressArbiter();
it = thread_tree.erase(it);
it = m_tree.erase(it);
++num_waiters;
}
}
return ResultSuccess;
R_SUCCEED();
}
Result KAddressArbiter::SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 count) {
// Perform signaling.
s32 num_waiters{};
{
KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
// Check the userspace value.
s32 user_value{};
if (!UpdateIfEqual(system, &user_value, addr, value, value + 1)) {
LOG_ERROR(Kernel, "Invalid current memory!");
return ResultInvalidCurrentMemory;
}
if (user_value != value) {
return ResultInvalidState;
}
R_UNLESS(UpdateIfEqual(m_system, &user_value, addr, value, value + 1),
ResultInvalidCurrentMemory);
R_UNLESS(user_value == value, ResultInvalidState);
auto it = thread_tree.nfind_key({addr, -1});
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
auto it = m_tree.nfind_key({addr, -1});
while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetAddressArbiterKey() == addr)) {
// End the thread's wait.
KThread* target_thread = std::addressof(*it);
@ -159,33 +155,33 @@ Result KAddressArbiter::SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 cou
ASSERT(target_thread->IsWaitingForAddressArbiter());
target_thread->ClearAddressArbiter();
it = thread_tree.erase(it);
it = m_tree.erase(it);
++num_waiters;
}
}
return ResultSuccess;
R_SUCCEED();
}
Result KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 value, s32 count) {
// Perform signaling.
s32 num_waiters{};
{
[[maybe_unused]] const KScopedSchedulerLock sl(kernel);
KScopedSchedulerLock sl(m_kernel);
auto it = thread_tree.nfind_key({addr, -1});
auto it = m_tree.nfind_key({addr, -1});
// Determine the updated value.
s32 new_value{};
if (count <= 0) {
if (it != thread_tree.end() && it->GetAddressArbiterKey() == addr) {
if (it != m_tree.end() && it->GetAddressArbiterKey() == addr) {
new_value = value - 2;
} else {
new_value = value + 1;
}
} else {
if (it != thread_tree.end() && it->GetAddressArbiterKey() == addr) {
if (it != m_tree.end() && it->GetAddressArbiterKey() == addr) {
auto tmp_it = it;
s32 tmp_num_waiters{};
while (++tmp_it != thread_tree.end() && tmp_it->GetAddressArbiterKey() == addr) {
while (++tmp_it != m_tree.end() && tmp_it->GetAddressArbiterKey() == addr) {
if (tmp_num_waiters++ >= count) {
break;
}
@ -205,20 +201,15 @@ Result KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 val
s32 user_value{};
bool succeeded{};
if (value != new_value) {
succeeded = UpdateIfEqual(system, &user_value, addr, value, new_value);
succeeded = UpdateIfEqual(m_system, &user_value, addr, value, new_value);
} else {
succeeded = ReadFromUser(system, &user_value, addr);
succeeded = ReadFromUser(m_system, &user_value, addr);
}
if (!succeeded) {
LOG_ERROR(Kernel, "Invalid current memory!");
return ResultInvalidCurrentMemory;
}
if (user_value != value) {
return ResultInvalidState;
}
R_UNLESS(succeeded, ResultInvalidCurrentMemory);
R_UNLESS(user_value == value, ResultInvalidState);
while ((it != thread_tree.end()) && (count <= 0 || num_waiters < count) &&
while ((it != m_tree.end()) && (count <= 0 || num_waiters < count) &&
(it->GetAddressArbiterKey() == addr)) {
// End the thread's wait.
KThread* target_thread = std::addressof(*it);
@ -227,57 +218,57 @@ Result KAddressArbiter::SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 val
ASSERT(target_thread->IsWaitingForAddressArbiter());
target_thread->ClearAddressArbiter();
it = thread_tree.erase(it);
it = m_tree.erase(it);
++num_waiters;
}
}
return ResultSuccess;
R_SUCCEED();
}
Result KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout) {
// Prepare to wait.
KThread* cur_thread = GetCurrentThreadPointer(kernel);
KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
KHardwareTimer* timer{};
ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree));
ThreadQueueImplForKAddressArbiter wait_queue(m_kernel, std::addressof(m_tree));
{
KScopedSchedulerLockAndSleep slp{kernel, std::addressof(timer), cur_thread, timeout};
KScopedSchedulerLockAndSleep slp{m_kernel, std::addressof(timer), cur_thread, timeout};
// Check that the thread isn't terminating.
if (cur_thread->IsTerminationRequested()) {
slp.CancelSleep();
return ResultTerminationRequested;
R_THROW(ResultTerminationRequested);
}
// Read the value from userspace.
s32 user_value{};
bool succeeded{};
if (decrement) {
succeeded = DecrementIfLessThan(system, &user_value, addr, value);
succeeded = DecrementIfLessThan(m_system, &user_value, addr, value);
} else {
succeeded = ReadFromUser(system, &user_value, addr);
succeeded = ReadFromUser(m_system, &user_value, addr);
}
if (!succeeded) {
slp.CancelSleep();
return ResultInvalidCurrentMemory;
R_THROW(ResultInvalidCurrentMemory);
}
// Check that the value is less than the specified one.
if (user_value >= value) {
slp.CancelSleep();
return ResultInvalidState;
R_THROW(ResultInvalidState);
}
// Check that the timeout is non-zero.
if (timeout == 0) {
slp.CancelSleep();
return ResultTimedOut;
R_THROW(ResultTimedOut);
}
// Set the arbiter.
cur_thread->SetAddressArbiter(&thread_tree, addr);
thread_tree.insert(*cur_thread);
cur_thread->SetAddressArbiter(std::addressof(m_tree), addr);
m_tree.insert(*cur_thread);
// Wait for the thread to finish.
wait_queue.SetHardwareTimer(timer);
@ -291,41 +282,41 @@ Result KAddressArbiter::WaitIfLessThan(VAddr addr, s32 value, bool decrement, s6
Result KAddressArbiter::WaitIfEqual(VAddr addr, s32 value, s64 timeout) {
// Prepare to wait.
KThread* cur_thread = GetCurrentThreadPointer(kernel);
KThread* cur_thread = GetCurrentThreadPointer(m_kernel);
KHardwareTimer* timer{};
ThreadQueueImplForKAddressArbiter wait_queue(kernel, std::addressof(thread_tree));
ThreadQueueImplForKAddressArbiter wait_queue(m_kernel, std::addressof(m_tree));
{
KScopedSchedulerLockAndSleep slp{kernel, std::addressof(timer), cur_thread, timeout};
KScopedSchedulerLockAndSleep slp{m_kernel, std::addressof(timer), cur_thread, timeout};
// Check that the thread isn't terminating.
if (cur_thread->IsTerminationRequested()) {
slp.CancelSleep();
return ResultTerminationRequested;
R_THROW(ResultTerminationRequested);
}
// Read the value from userspace.
s32 user_value{};
if (!ReadFromUser(system, &user_value, addr)) {
if (!ReadFromUser(m_system, &user_value, addr)) {
slp.CancelSleep();
return ResultInvalidCurrentMemory;
R_THROW(ResultInvalidCurrentMemory);
}
// Check that the value is equal.
if (value != user_value) {
slp.CancelSleep();
return ResultInvalidState;
R_THROW(ResultInvalidState);
}
// Check that the timeout is non-zero.
if (timeout == 0) {
slp.CancelSleep();
return ResultTimedOut;
R_THROW(ResultTimedOut);
}
// Set the arbiter.
cur_thread->SetAddressArbiter(&thread_tree, addr);
thread_tree.insert(*cur_thread);
cur_thread->SetAddressArbiter(std::addressof(m_tree), addr);
m_tree.insert(*cur_thread);
// Wait for the thread to finish.
wait_queue.SetHardwareTimer(timer);

View File

@ -22,47 +22,46 @@ class KAddressArbiter {
public:
using ThreadTree = KConditionVariable::ThreadTree;
explicit KAddressArbiter(Core::System& system_);
explicit KAddressArbiter(Core::System& system);
~KAddressArbiter();
[[nodiscard]] Result SignalToAddress(VAddr addr, Svc::SignalType type, s32 value, s32 count) {
Result SignalToAddress(VAddr addr, Svc::SignalType type, s32 value, s32 count) {
switch (type) {
case Svc::SignalType::Signal:
return Signal(addr, count);
R_RETURN(this->Signal(addr, count));
case Svc::SignalType::SignalAndIncrementIfEqual:
return SignalAndIncrementIfEqual(addr, value, count);
R_RETURN(this->SignalAndIncrementIfEqual(addr, value, count));
case Svc::SignalType::SignalAndModifyByWaitingCountIfEqual:
return SignalAndModifyByWaitingCountIfEqual(addr, value, count);
R_RETURN(this->SignalAndModifyByWaitingCountIfEqual(addr, value, count));
default:
UNREACHABLE();
}
ASSERT(false);
return ResultUnknown;
}
[[nodiscard]] Result WaitForAddress(VAddr addr, Svc::ArbitrationType type, s32 value,
s64 timeout) {
Result WaitForAddress(VAddr addr, Svc::ArbitrationType type, s32 value, s64 timeout) {
switch (type) {
case Svc::ArbitrationType::WaitIfLessThan:
return WaitIfLessThan(addr, value, false, timeout);
R_RETURN(WaitIfLessThan(addr, value, false, timeout));
case Svc::ArbitrationType::DecrementAndWaitIfLessThan:
return WaitIfLessThan(addr, value, true, timeout);
R_RETURN(WaitIfLessThan(addr, value, true, timeout));
case Svc::ArbitrationType::WaitIfEqual:
return WaitIfEqual(addr, value, timeout);
R_RETURN(WaitIfEqual(addr, value, timeout));
default:
UNREACHABLE();
}
ASSERT(false);
return ResultUnknown;
}
private:
[[nodiscard]] Result Signal(VAddr addr, s32 count);
[[nodiscard]] Result SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 count);
[[nodiscard]] Result SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 value, s32 count);
[[nodiscard]] Result WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout);
[[nodiscard]] Result WaitIfEqual(VAddr addr, s32 value, s64 timeout);
Result Signal(VAddr addr, s32 count);
Result SignalAndIncrementIfEqual(VAddr addr, s32 value, s32 count);
Result SignalAndModifyByWaitingCountIfEqual(VAddr addr, s32 value, s32 count);
Result WaitIfLessThan(VAddr addr, s32 value, bool decrement, s64 timeout);
Result WaitIfEqual(VAddr addr, s32 value, s64 timeout);
ThreadTree thread_tree;
Core::System& system;
KernelCore& kernel;
private:
ThreadTree m_tree;
Core::System& m_system;
KernelCore& m_kernel;
};
} // namespace Kernel

View File

@ -80,17 +80,17 @@ public:
return GetCurrentThread(kernel).GetDisableDispatchCount() == 0;
}
static bool IsSchedulerLockedByCurrentThread(KernelCore& kernel) {
return kernel.GlobalSchedulerContext().scheduler_lock.IsLockedByCurrentThread();
return kernel.GlobalSchedulerContext().m_scheduler_lock.IsLockedByCurrentThread();
}
static bool IsSchedulerUpdateNeeded(KernelCore& kernel) {
return kernel.GlobalSchedulerContext().scheduler_update_needed;
return kernel.GlobalSchedulerContext().m_scheduler_update_needed;
}
static void SetSchedulerUpdateNeeded(KernelCore& kernel) {
kernel.GlobalSchedulerContext().scheduler_update_needed = true;
kernel.GlobalSchedulerContext().m_scheduler_update_needed = true;
}
static void ClearSchedulerUpdateNeeded(KernelCore& kernel) {
kernel.GlobalSchedulerContext().scheduler_update_needed = false;
kernel.GlobalSchedulerContext().m_scheduler_update_needed = false;
}
static void DisableScheduling(KernelCore& kernel);
@ -115,7 +115,7 @@ public:
private:
// Static private API.
static KSchedulerPriorityQueue& GetPriorityQueue(KernelCore& kernel) {
return kernel.GlobalSchedulerContext().priority_queue;
return kernel.GlobalSchedulerContext().m_priority_queue;
}
static u64 UpdateHighestPriorityThreadsImpl(KernelCore& kernel);
@ -166,7 +166,7 @@ private:
class KScopedSchedulerLock : public KScopedLock<KScheduler::LockType> {
public:
explicit KScopedSchedulerLock(KernelCore& kernel)
: KScopedLock(kernel.GlobalSchedulerContext().scheduler_lock) {}
: KScopedLock(kernel.GlobalSchedulerContext().m_scheduler_lock) {}
~KScopedSchedulerLock() = default;
};

View File

@ -11,39 +11,39 @@
namespace Kernel {
class [[nodiscard]] KScopedSchedulerLockAndSleep {
class KScopedSchedulerLockAndSleep {
public:
explicit KScopedSchedulerLockAndSleep(KernelCore& kernel_, KHardwareTimer** out_timer,
KThread* t, s64 timeout)
: kernel(kernel_), timeout_tick(timeout), thread(t), timer() {
explicit KScopedSchedulerLockAndSleep(KernelCore& kernel, KHardwareTimer** out_timer,
KThread* thread, s64 timeout_tick)
: m_kernel(kernel), m_timeout_tick(timeout_tick), m_thread(thread), m_timer() {
// Lock the scheduler.
kernel.GlobalSchedulerContext().scheduler_lock.Lock();
kernel.GlobalSchedulerContext().m_scheduler_lock.Lock();
// Set our timer only if the time is positive.
timer = (timeout_tick > 0) ? std::addressof(kernel.HardwareTimer()) : nullptr;
m_timer = (timeout_tick > 0) ? std::addressof(kernel.HardwareTimer()) : nullptr;
*out_timer = timer;
*out_timer = m_timer;
}
~KScopedSchedulerLockAndSleep() {
// Register the sleep.
if (timeout_tick > 0) {
timer->RegisterTask(thread, timeout_tick);
if (m_timeout_tick > 0) {
m_timer->RegisterTask(m_thread, m_timeout_tick);
}
// Unlock the scheduler.
kernel.GlobalSchedulerContext().scheduler_lock.Unlock();
m_kernel.GlobalSchedulerContext().m_scheduler_lock.Unlock();
}
void CancelSleep() {
timeout_tick = 0;
m_timeout_tick = 0;
}
private:
KernelCore& kernel;
s64 timeout_tick{};
KThread* thread{};
KHardwareTimer* timer{};
KernelCore& m_kernel;
s64 m_timeout_tick{};
KThread* m_thread{};
KHardwareTimer* m_timer{};
};
} // namespace Kernel

View File

@ -7,9 +7,10 @@
namespace Kernel {
void KThreadQueue::NotifyAvailable([[maybe_unused]] KThread* waiting_thread,
[[maybe_unused]] KSynchronizationObject* signaled_object,
[[maybe_unused]] Result wait_result) {}
void KThreadQueue::NotifyAvailable(KThread* waiting_thread, KSynchronizationObject* signaled_object,
Result wait_result) {
UNREACHABLE();
}
void KThreadQueue::EndWait(KThread* waiting_thread, Result wait_result) {
// Set the thread's wait result.
@ -43,7 +44,8 @@ void KThreadQueue::CancelWait(KThread* waiting_thread, Result wait_result, bool
}
}
void KThreadQueueWithoutEndWait::EndWait([[maybe_unused]] KThread* waiting_thread,
[[maybe_unused]] Result wait_result) {}
void KThreadQueueWithoutEndWait::EndWait(KThread* waiting_thread, Result wait_result) {
UNREACHABLE();
}
} // namespace Kernel

View File

@ -12,7 +12,7 @@ class KHardwareTimer;
class KThreadQueue {
public:
explicit KThreadQueue(KernelCore& kernel_) : kernel{kernel_}, m_hardware_timer{} {}
explicit KThreadQueue(KernelCore& kernel) : m_kernel{kernel}, m_hardware_timer{} {}
virtual ~KThreadQueue() = default;
void SetHardwareTimer(KHardwareTimer* timer) {
@ -25,7 +25,7 @@ public:
virtual void CancelWait(KThread* waiting_thread, Result wait_result, bool cancel_timer_task);
private:
KernelCore& kernel;
KernelCore& m_kernel;
KHardwareTimer* m_hardware_timer{};
};