yuzu-emu
/
yuzu
Archived
1
0
Fork 0

Merge pull request #6525 from ameerj/nvdec-fixes

nvdec: Fix Submit Ioctl data source, vic frame dimension computations
This commit is contained in:
Fernando S 2021-07-15 15:17:50 +02:00 committed by GitHub
commit da4ca4f2f9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 50 additions and 56 deletions

View File

@ -19,26 +19,29 @@
namespace Service::Nvidia::Devices { namespace Service::Nvidia::Devices {
namespace { namespace {
// Splice vectors will copy count amount of type T from the input vector into the dst vector. // Copies count amount of type T from the input vector into the dst vector.
// Returns the number of bytes written into dst.
template <typename T> template <typename T>
std::size_t SpliceVectors(const std::vector<u8>& input, std::vector<T>& dst, std::size_t count, std::size_t SliceVectors(const std::vector<u8>& input, std::vector<T>& dst, std::size_t count,
std::size_t offset) { std::size_t offset) {
if (!dst.empty()) { if (dst.empty()) {
std::memcpy(dst.data(), input.data() + offset, count * sizeof(T));
}
return 0; return 0;
} }
const size_t bytes_copied = count * sizeof(T);
std::memcpy(dst.data(), input.data() + offset, bytes_copied);
return bytes_copied;
}
// Write vectors will write data to the output buffer // Writes the data in src to an offset into the dst vector. The offset is specified in bytes
// Returns the number of bytes written into dst.
template <typename T> template <typename T>
std::size_t WriteVectors(std::vector<u8>& dst, const std::vector<T>& src, std::size_t offset) { std::size_t WriteVectors(std::vector<u8>& dst, const std::vector<T>& src, std::size_t offset) {
if (src.empty()) { if (src.empty()) {
return 0; return 0;
} else {
std::memcpy(dst.data() + offset, src.data(), src.size() * sizeof(T));
offset += src.size() * sizeof(T);
return offset;
} }
const size_t bytes_copied = src.size() * sizeof(T);
std::memcpy(dst.data() + offset, src.data(), bytes_copied);
return bytes_copied;
} }
} // Anonymous namespace } // Anonymous namespace
@ -62,7 +65,6 @@ NvResult nvhost_nvdec_common::Submit(const std::vector<u8>& input, std::vector<u
LOG_DEBUG(Service_NVDRV, "called NVDEC Submit, cmd_buffer_count={}", params.cmd_buffer_count); LOG_DEBUG(Service_NVDRV, "called NVDEC Submit, cmd_buffer_count={}", params.cmd_buffer_count);
// Instantiate param buffers // Instantiate param buffers
std::size_t offset = sizeof(IoctlSubmit);
std::vector<CommandBuffer> command_buffers(params.cmd_buffer_count); std::vector<CommandBuffer> command_buffers(params.cmd_buffer_count);
std::vector<Reloc> relocs(params.relocation_count); std::vector<Reloc> relocs(params.relocation_count);
std::vector<u32> reloc_shifts(params.relocation_count); std::vector<u32> reloc_shifts(params.relocation_count);
@ -70,13 +72,14 @@ NvResult nvhost_nvdec_common::Submit(const std::vector<u8>& input, std::vector<u
std::vector<SyncptIncr> wait_checks(params.syncpoint_count); std::vector<SyncptIncr> wait_checks(params.syncpoint_count);
std::vector<Fence> fences(params.fence_count); std::vector<Fence> fences(params.fence_count);
// Splice input into their respective buffers // Slice input into their respective buffers
offset = SpliceVectors(input, command_buffers, params.cmd_buffer_count, offset); std::size_t offset = sizeof(IoctlSubmit);
offset = SpliceVectors(input, relocs, params.relocation_count, offset); offset += SliceVectors(input, command_buffers, params.cmd_buffer_count, offset);
offset = SpliceVectors(input, reloc_shifts, params.relocation_count, offset); offset += SliceVectors(input, relocs, params.relocation_count, offset);
offset = SpliceVectors(input, syncpt_increments, params.syncpoint_count, offset); offset += SliceVectors(input, reloc_shifts, params.relocation_count, offset);
offset = SpliceVectors(input, wait_checks, params.syncpoint_count, offset); offset += SliceVectors(input, syncpt_increments, params.syncpoint_count, offset);
offset = SpliceVectors(input, fences, params.fence_count, offset); offset += SliceVectors(input, wait_checks, params.syncpoint_count, offset);
offset += SliceVectors(input, fences, params.fence_count, offset);
auto& gpu = system.GPU(); auto& gpu = system.GPU();
if (gpu.UseNvdec()) { if (gpu.UseNvdec()) {
@ -88,35 +91,27 @@ NvResult nvhost_nvdec_common::Submit(const std::vector<u8>& input, std::vector<u
} }
} }
for (const auto& cmd_buffer : command_buffers) { for (const auto& cmd_buffer : command_buffers) {
auto object = nvmap_dev->GetObject(cmd_buffer.memory_id); const auto object = nvmap_dev->GetObject(cmd_buffer.memory_id);
ASSERT_OR_EXECUTE(object, return NvResult::InvalidState;); ASSERT_OR_EXECUTE(object, return NvResult::InvalidState;);
const auto map = FindBufferMap(object->dma_map_addr);
if (!map) {
LOG_ERROR(Service_NVDRV, "Tried to submit an invalid offset 0x{:X} dma 0x{:X}",
object->addr, object->dma_map_addr);
return NvResult::Success;
}
Tegra::ChCommandHeaderList cmdlist(cmd_buffer.word_count); Tegra::ChCommandHeaderList cmdlist(cmd_buffer.word_count);
gpu.MemoryManager().ReadBlock(map->StartAddr() + cmd_buffer.offset, cmdlist.data(), system.Memory().ReadBlock(object->addr + cmd_buffer.offset, cmdlist.data(),
cmdlist.size() * sizeof(u32)); cmdlist.size() * sizeof(u32));
gpu.PushCommandBuffer(cmdlist); gpu.PushCommandBuffer(cmdlist);
} }
if (gpu.UseNvdec()) { if (gpu.UseNvdec()) {
fences[0].value = syncpoint_manager.IncreaseSyncpoint(fences[0].id, 1); fences[0].value = syncpoint_manager.IncreaseSyncpoint(fences[0].id, 1);
Tegra::ChCommandHeaderList cmdlist{{(4 << 28) | fences[0].id}}; Tegra::ChCommandHeaderList cmdlist{{(4 << 28) | fences[0].id}};
gpu.PushCommandBuffer(cmdlist); gpu.PushCommandBuffer(cmdlist);
} }
std::memcpy(output.data(), &params, sizeof(IoctlSubmit)); std::memcpy(output.data(), &params, sizeof(IoctlSubmit));
// Some games expect command_buffers to be written back // Some games expect command_buffers to be written back
offset = sizeof(IoctlSubmit); offset = sizeof(IoctlSubmit);
offset = WriteVectors(output, command_buffers, offset); offset += WriteVectors(output, command_buffers, offset);
offset = WriteVectors(output, relocs, offset); offset += WriteVectors(output, relocs, offset);
offset = WriteVectors(output, reloc_shifts, offset); offset += WriteVectors(output, reloc_shifts, offset);
offset = WriteVectors(output, syncpt_increments, offset); offset += WriteVectors(output, syncpt_increments, offset);
offset = WriteVectors(output, wait_checks, offset); offset += WriteVectors(output, wait_checks, offset);
offset = WriteVectors(output, fences, offset); offset += WriteVectors(output, fences, offset);
return NvResult::Success; return NvResult::Success;
} }
@ -148,14 +143,14 @@ NvResult nvhost_nvdec_common::MapBuffer(const std::vector<u8>& input, std::vecto
std::memcpy(&params, input.data(), sizeof(IoctlMapBuffer)); std::memcpy(&params, input.data(), sizeof(IoctlMapBuffer));
std::vector<MapBufferEntry> cmd_buffer_handles(params.num_entries); std::vector<MapBufferEntry> cmd_buffer_handles(params.num_entries);
SpliceVectors(input, cmd_buffer_handles, params.num_entries, sizeof(IoctlMapBuffer)); SliceVectors(input, cmd_buffer_handles, params.num_entries, sizeof(IoctlMapBuffer));
auto& gpu = system.GPU(); auto& gpu = system.GPU();
for (auto& cmf_buff : cmd_buffer_handles) { for (auto& cmd_buffer : cmd_buffer_handles) {
auto object{nvmap_dev->GetObject(cmf_buff.map_handle)}; auto object{nvmap_dev->GetObject(cmd_buffer.map_handle)};
if (!object) { if (!object) {
LOG_ERROR(Service_NVDRV, "invalid cmd_buffer nvmap_handle={:X}", cmf_buff.map_handle); LOG_ERROR(Service_NVDRV, "invalid cmd_buffer nvmap_handle={:X}", cmd_buffer.map_handle);
std::memcpy(output.data(), &params, output.size()); std::memcpy(output.data(), &params, output.size());
return NvResult::InvalidState; return NvResult::InvalidState;
} }
@ -170,7 +165,7 @@ NvResult nvhost_nvdec_common::MapBuffer(const std::vector<u8>& input, std::vecto
if (!object->dma_map_addr) { if (!object->dma_map_addr) {
LOG_ERROR(Service_NVDRV, "failed to map size={}", object->size); LOG_ERROR(Service_NVDRV, "failed to map size={}", object->size);
} else { } else {
cmf_buff.map_address = object->dma_map_addr; cmd_buffer.map_address = object->dma_map_addr;
AddBufferMap(object->dma_map_addr, object->size, object->addr, AddBufferMap(object->dma_map_addr, object->size, object->addr,
object->status == nvmap::Object::Status::Allocated); object->status == nvmap::Object::Status::Allocated);
} }
@ -186,14 +181,14 @@ NvResult nvhost_nvdec_common::UnmapBuffer(const std::vector<u8>& input, std::vec
IoctlMapBuffer params{}; IoctlMapBuffer params{};
std::memcpy(&params, input.data(), sizeof(IoctlMapBuffer)); std::memcpy(&params, input.data(), sizeof(IoctlMapBuffer));
std::vector<MapBufferEntry> cmd_buffer_handles(params.num_entries); std::vector<MapBufferEntry> cmd_buffer_handles(params.num_entries);
SpliceVectors(input, cmd_buffer_handles, params.num_entries, sizeof(IoctlMapBuffer)); SliceVectors(input, cmd_buffer_handles, params.num_entries, sizeof(IoctlMapBuffer));
auto& gpu = system.GPU(); auto& gpu = system.GPU();
for (auto& cmf_buff : cmd_buffer_handles) { for (auto& cmd_buffer : cmd_buffer_handles) {
const auto object{nvmap_dev->GetObject(cmf_buff.map_handle)}; const auto object{nvmap_dev->GetObject(cmd_buffer.map_handle)};
if (!object) { if (!object) {
LOG_ERROR(Service_NVDRV, "invalid cmd_buffer nvmap_handle={:X}", cmf_buff.map_handle); LOG_ERROR(Service_NVDRV, "invalid cmd_buffer nvmap_handle={:X}", cmd_buffer.map_handle);
std::memcpy(output.data(), &params, output.size()); std::memcpy(output.data(), &params, output.size());
return NvResult::InvalidState; return NvResult::InvalidState;
} }

View File

@ -129,28 +129,27 @@ void Vic::Execute() {
const std::size_t surface_width = config.surface_width_minus1 + 1; const std::size_t surface_width = config.surface_width_minus1 + 1;
const std::size_t surface_height = config.surface_height_minus1 + 1; const std::size_t surface_height = config.surface_height_minus1 + 1;
const std::size_t half_width = surface_width / 2; const auto frame_width = std::min(surface_width, static_cast<size_t>(frame->width));
const std::size_t half_height = config.surface_height_minus1 / 2; const auto frame_height = std::min(surface_height, static_cast<size_t>(frame->height));
const std::size_t half_width = frame_width / 2;
const std::size_t half_height = frame_height / 2;
const std::size_t aligned_width = (surface_width + 0xff) & ~0xff; const std::size_t aligned_width = (surface_width + 0xff) & ~0xff;
const auto* luma_ptr = frame->data[0]; const auto* luma_ptr = frame->data[0];
const auto* chroma_b_ptr = frame->data[1]; const auto* chroma_b_ptr = frame->data[1];
const auto* chroma_r_ptr = frame->data[2]; const auto* chroma_r_ptr = frame->data[2];
const auto stride = frame->linesize[0]; const auto stride = static_cast<size_t>(frame->linesize[0]);
const auto half_stride = frame->linesize[1]; const auto half_stride = static_cast<size_t>(frame->linesize[1]);
luma_buffer.resize(aligned_width * surface_height); luma_buffer.resize(aligned_width * surface_height);
chroma_buffer.resize(aligned_width * half_height); chroma_buffer.resize(aligned_width * surface_height / 2);
// Populate luma buffer // Populate luma buffer
for (std::size_t y = 0; y < surface_height - 1; ++y) { for (std::size_t y = 0; y < frame_height; ++y) {
const std::size_t src = y * stride; const std::size_t src = y * stride;
const std::size_t dst = y * aligned_width; const std::size_t dst = y * aligned_width;
for (std::size_t x = 0; x < frame_width; ++x) {
const std::size_t size = surface_width; luma_buffer[dst + x] = luma_ptr[src + x];
for (std::size_t offset = 0; offset < size; ++offset) {
luma_buffer[dst + offset] = luma_ptr[src + offset];
} }
} }
gpu.MemoryManager().WriteBlock(output_surface_luma_address, luma_buffer.data(), gpu.MemoryManager().WriteBlock(output_surface_luma_address, luma_buffer.data(),