yuzu-emu
/
yuzu
Archived
1
0
Fork 0

Merge pull request #31 from neobrain/gpu_framebuffer

GPU framebuffer emulation improvements
This commit is contained in:
bunnei 2014-07-22 19:20:57 -04:00
commit daa924b906
11 changed files with 595 additions and 238 deletions

View File

@ -28,22 +28,24 @@ QVariant GPUCommandStreamItemModel::data(const QModelIndex& index, int role) con
const GSP_GPU::GXCommand& command = GetDebugger()->ReadGXCommandHistory(command_index);
if (role == Qt::DisplayRole)
{
std::map<GSP_GPU::GXCommandId, const char*> command_names;
command_names[GSP_GPU::GXCommandId::REQUEST_DMA] = "REQUEST_DMA";
command_names[GSP_GPU::GXCommandId::SET_COMMAND_LIST_FIRST] = "SET_COMMAND_LIST_FIRST";
command_names[GSP_GPU::GXCommandId::SET_MEMORY_FILL] = "SET_MEMORY_FILL";
command_names[GSP_GPU::GXCommandId::SET_DISPLAY_TRANSFER] = "SET_DISPLAY_TRANSFER";
command_names[GSP_GPU::GXCommandId::SET_TEXTURE_COPY] = "SET_TEXTURE_COPY";
command_names[GSP_GPU::GXCommandId::SET_COMMAND_LIST_LAST] = "SET_COMMAND_LIST_LAST";
QString str = QString("%1 %2 %3 %4 %5 %6 %7 %8 %9").arg(command_names[static_cast<GSP_GPU::GXCommandId>(command.id)])
.arg(command.data[0], 8, 16, QLatin1Char('0'))
.arg(command.data[1], 8, 16, QLatin1Char('0'))
.arg(command.data[2], 8, 16, QLatin1Char('0'))
.arg(command.data[3], 8, 16, QLatin1Char('0'))
.arg(command.data[4], 8, 16, QLatin1Char('0'))
.arg(command.data[5], 8, 16, QLatin1Char('0'))
.arg(command.data[6], 8, 16, QLatin1Char('0'))
.arg(command.data[7], 8, 16, QLatin1Char('0'));
std::map<GSP_GPU::GXCommandId, const char*> command_names = {
{ GSP_GPU::GXCommandId::REQUEST_DMA, "REQUEST_DMA" },
{ GSP_GPU::GXCommandId::SET_COMMAND_LIST_FIRST, "SET_COMMAND_LIST_FIRST" },
{ GSP_GPU::GXCommandId::SET_MEMORY_FILL, "SET_MEMORY_FILL" },
{ GSP_GPU::GXCommandId::SET_DISPLAY_TRANSFER, "SET_DISPLAY_TRANSFER" },
{ GSP_GPU::GXCommandId::SET_TEXTURE_COPY, "SET_TEXTURE_COPY" },
{ GSP_GPU::GXCommandId::SET_COMMAND_LIST_LAST, "SET_COMMAND_LIST_LAST" }
};
const u32* command_data = reinterpret_cast<const u32*>(&command);
QString str = QString("%1 %2 %3 %4 %5 %6 %7 %8 %9").arg(command_names[command.id])
.arg(command_data[0], 8, 16, QLatin1Char('0'))
.arg(command_data[1], 8, 16, QLatin1Char('0'))
.arg(command_data[2], 8, 16, QLatin1Char('0'))
.arg(command_data[3], 8, 16, QLatin1Char('0'))
.arg(command_data[4], 8, 16, QLatin1Char('0'))
.arg(command_data[5], 8, 16, QLatin1Char('0'))
.arg(command_data[6], 8, 16, QLatin1Char('0'))
.arg(command_data[7], 8, 16, QLatin1Char('0'));
return QVariant(str);
}
else

View File

@ -34,7 +34,7 @@
/*
* Standardized way to define a group of registers and corresponding data structures. To define
* a new register set, first define struct containing an enumeration called "Id" containing
* all register IDs and a template union called "Struct". Specialize the Struct union for any
* all register IDs and a template struct called "Struct". Specialize the Struct struct for any
* register ID which needs to be accessed in a specialized way. You can then declare the object
* containing all register values using the RegisterSet<BaseType, DefiningStruct> type, where
* BaseType is the underlying type of each register (e.g. u32).
@ -54,7 +54,7 @@
*
* // declare register definition structures
* template<Id id>
* union Struct;
* struct Struct;
* };
*
* // Define register set object
@ -62,9 +62,11 @@
*
* // define register definition structures
* template<>
* union Regs::Struct<Regs::Value1> {
* BitField<0, 4, u32> some_field;
* BitField<4, 3, u32> some_other_field;
* struct Regs::Struct<Regs::Value1> {
* union {
* BitField<0, 4, u32> some_field;
* BitField<4, 3, u32> some_other_field;
* };
* };
*
* Usage in external code (within SomeNamespace scope):
@ -77,7 +79,7 @@
*
*
* @tparam BaseType Base type used for storing individual registers, e.g. u32
* @tparam RegDefinition Class defining an enumeration called "Id" and a template<Id id> union, as described above.
* @tparam RegDefinition Class defining an enumeration called "Id" and a template<Id id> struct, as described above.
* @note RegDefinition::Id needs to have an enum value called NumIds defining the number of registers to be allocated.
*/
template<typename BaseType, typename RegDefinition>

View File

@ -1,10 +1,10 @@
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2
// Refer to the license.txt file included.
// Refer to the license.txt file included.
#pragma once
// Configuration memory stores various hardware/kernel configuration settings. This memory page is
// Configuration memory stores various hardware/kernel configuration settings. This memory page is
// read-only for ARM11 processes. I'm guessing this would normally be written to by the firmware/
// bootrom. Because we're not emulating this, and essentially just "stubbing" the functionality, I'm
// putting this as a subset of HLE for now.
@ -16,6 +16,6 @@
namespace ConfigMem {
template <typename T>
inline void Read(T &var, const u32 addr);
void Read(T &var, const u32 addr);
} // namespace

View File

@ -47,11 +47,6 @@ Handle g_shared_memory = 0;
u32 g_thread_id = 0;
enum {
REG_FRAMEBUFFER_1 = 0x00400468,
REG_FRAMEBUFFER_2 = 0x00400494,
};
/// Gets a pointer to the start (header) of a command buffer in GSP shared memory
static inline u8* GX_GetCmdBufferPointer(u32 thread_id, u32 offset=0) {
return Kernel::GetSharedMemoryPointer(g_shared_memory, 0x800 + (thread_id * 0x200) + offset);
@ -67,38 +62,62 @@ void GX_FinishCommand(u32 thread_id) {
// TODO: Increment header->index?
}
/// Read a GSP GPU hardware register
void ReadHWRegs(Service::Interface* self) {
static const u32 framebuffer_1[] = {GPU::PADDR_VRAM_TOP_LEFT_FRAME1, GPU::PADDR_VRAM_TOP_RIGHT_FRAME1};
static const u32 framebuffer_2[] = {GPU::PADDR_VRAM_TOP_LEFT_FRAME2, GPU::PADDR_VRAM_TOP_RIGHT_FRAME2};
/// Write a GSP GPU hardware register
void WriteHWRegs(Service::Interface* self) {
u32* cmd_buff = Service::GetCommandBuffer();
u32 reg_addr = cmd_buff[1];
u32 size = cmd_buff[2];
u32* dst = (u32*)Memory::GetPointer(cmd_buff[0x41]);
switch (reg_addr) {
// NOTE: Calling SetFramebufferLocation here is a hack... Not sure the correct way yet to set
// whether the framebuffers should be in VRAM or GSP heap, but from what I understand, if the
// user application is reading from either of these registers, then its going to be in VRAM.
// Top framebuffer 1 addresses
case REG_FRAMEBUFFER_1:
GPU::SetFramebufferLocation(GPU::FRAMEBUFFER_LOCATION_VRAM);
memcpy(dst, framebuffer_1, size);
break;
// Top framebuffer 2 addresses
case REG_FRAMEBUFFER_2:
GPU::SetFramebufferLocation(GPU::FRAMEBUFFER_LOCATION_VRAM);
memcpy(dst, framebuffer_2, size);
break;
default:
ERROR_LOG(GSP, "unknown register read at address %08X", reg_addr);
// TODO: Return proper error codes
if (reg_addr + size >= 0x420000) {
ERROR_LOG(GPU, "Write address out of range! (address=0x%08x, size=0x%08x)", reg_addr, size);
return;
}
// size should be word-aligned
if ((size % 4) != 0) {
ERROR_LOG(GPU, "Invalid size 0x%08x", size);
return;
}
u32* src = (u32*)Memory::GetPointer(cmd_buff[0x4]);
while (size > 0) {
GPU::Write<u32>(reg_addr + 0x1EB00000, *src);
size -= 4;
++src;
reg_addr += 4;
}
}
/// Read a GSP GPU hardware register
void ReadHWRegs(Service::Interface* self) {
u32* cmd_buff = Service::GetCommandBuffer();
u32 reg_addr = cmd_buff[1];
u32 size = cmd_buff[2];
// TODO: Return proper error codes
if (reg_addr + size >= 0x420000) {
ERROR_LOG(GPU, "Read address out of range! (address=0x%08x, size=0x%08x)", reg_addr, size);
return;
}
// size should be word-aligned
if ((size % 4) != 0) {
ERROR_LOG(GPU, "Invalid size 0x%08x", size);
return;
}
u32* dst = (u32*)Memory::GetPointer(cmd_buff[0x41]);
while (size > 0) {
GPU::Read<u32>(*dst, reg_addr + 0x1EB00000);
size -= 4;
++dst;
reg_addr += 4;
}
}
/**
@ -120,8 +139,8 @@ void RegisterInterruptRelayQueue(Service::Interface* self) {
Kernel::SetEventLocked(g_event, false);
// Hack - This function will permanently set the state of the GSP event such that GPU command
// synchronization barriers always passthrough. Correct solution would be to set this after the
// Hack - This function will permanently set the state of the GSP event such that GPU command
// synchronization barriers always passthrough. Correct solution would be to set this after the
// GPU as processed all queued up commands, but due to the emulator being single-threaded they
// will always be ready.
Kernel::SetPermanentLock(g_event, true);
@ -134,52 +153,92 @@ void RegisterInterruptRelayQueue(Service::Interface* self) {
/// This triggers handling of the GX command written to the command buffer in shared memory.
void TriggerCmdReqQueue(Service::Interface* self) {
GX_CmdBufferHeader* header = (GX_CmdBufferHeader*)GX_GetCmdBufferPointer(g_thread_id);
u32* cmd_buff = (u32*)GX_GetCmdBufferPointer(g_thread_id, 0x20 + (header->index * 0x20));
switch (static_cast<GXCommandId>(cmd_buff[0])) {
// Utility function to convert register ID to address
auto WriteGPURegister = [](u32 id, u32 data) {
GPU::Write<u32>(0x1EF00000 + 4 * id, data);
};
GX_CmdBufferHeader* header = (GX_CmdBufferHeader*)GX_GetCmdBufferPointer(g_thread_id);
auto& command = *(const GXCommand*)GX_GetCmdBufferPointer(g_thread_id, 0x20 + (header->index * 0x20));
switch (command.id) {
// GX request DMA - typically used for copying memory from GSP heap to VRAM
case GXCommandId::REQUEST_DMA:
memcpy(Memory::GetPointer(cmd_buff[2]), Memory::GetPointer(cmd_buff[1]), cmd_buff[3]);
memcpy(Memory::GetPointer(command.dma_request.dest_address),
Memory::GetPointer(command.dma_request.source_address),
command.dma_request.size);
break;
// ctrulib homebrew sends all relevant command list data with this command,
// hence we do all "interesting" stuff here and do nothing in SET_COMMAND_LIST_FIRST.
// TODO: This will need some rework in the future.
case GXCommandId::SET_COMMAND_LIST_LAST:
GPU::Write<u32>(GPU::Registers::CommandListAddress, cmd_buff[1] >> 3);
GPU::Write<u32>(GPU::Registers::CommandListSize, cmd_buff[2] >> 3);
GPU::Write<u32>(GPU::Registers::ProcessCommandList, 1); // TODO: Not sure if we are supposed to always write this
{
auto& params = command.set_command_list_last;
WriteGPURegister(GPU::Regs::CommandProcessor + 2, params.address >> 3);
WriteGPURegister(GPU::Regs::CommandProcessor, params.size >> 3);
WriteGPURegister(GPU::Regs::CommandProcessor + 4, 1); // TODO: Not sure if we are supposed to always write this .. seems to trigger processing though
// TODO: Move this to GPU
// TODO: Not sure what units the size is measured in
g_debugger.CommandListCalled(cmd_buff[1], (u32*)Memory::GetPointer(cmd_buff[1]), cmd_buff[2]);
g_debugger.CommandListCalled(params.address,
(u32*)Memory::GetPointer(params.address),
params.size);
break;
}
// It's assumed that the two "blocks" behave equivalently.
// Presumably this is done simply to allow two memory fills to run in parallel.
case GXCommandId::SET_MEMORY_FILL:
break;
{
auto& params = command.memory_fill;
WriteGPURegister(GPU::Regs::MemoryFill, params.start1 >> 3);
WriteGPURegister(GPU::Regs::MemoryFill + 1, params.end1 >> 3);
WriteGPURegister(GPU::Regs::MemoryFill + 2, params.end1 - params.start1);
WriteGPURegister(GPU::Regs::MemoryFill + 3, params.value1);
WriteGPURegister(GPU::Regs::MemoryFill + 4, params.start2 >> 3);
WriteGPURegister(GPU::Regs::MemoryFill + 5, params.end2 >> 3);
WriteGPURegister(GPU::Regs::MemoryFill + 6, params.end2 - params.start2);
WriteGPURegister(GPU::Regs::MemoryFill + 7, params.value2);
break;
}
// TODO: Check if texture copies are implemented correctly..
case GXCommandId::SET_DISPLAY_TRANSFER:
break;
case GXCommandId::SET_TEXTURE_COPY:
break;
{
auto& params = command.image_copy;
WriteGPURegister(GPU::Regs::DisplayTransfer, params.in_buffer_address >> 3);
WriteGPURegister(GPU::Regs::DisplayTransfer + 1, params.out_buffer_address >> 3);
WriteGPURegister(GPU::Regs::DisplayTransfer + 3, params.in_buffer_size);
WriteGPURegister(GPU::Regs::DisplayTransfer + 2, params.out_buffer_size);
WriteGPURegister(GPU::Regs::DisplayTransfer + 4, params.flags);
// TODO: Should this only be ORed with 1 for texture copies?
// trigger transfer
WriteGPURegister(GPU::Regs::DisplayTransfer + 6, 1);
break;
}
// TODO: Figure out what exactly SET_COMMAND_LIST_FIRST and SET_COMMAND_LIST_LAST
// are supposed to do.
case GXCommandId::SET_COMMAND_LIST_FIRST:
{
//u32* buf0_data = (u32*)Memory::GetPointer(cmd_buff[1]);
//u32* buf1_data = (u32*)Memory::GetPointer(cmd_buff[3]);
//u32* buf2_data = (u32*)Memory::GetPointer(cmd_buff[5]);
break;
}
default:
ERROR_LOG(GSP, "unknown command 0x%08X", cmd_buff[0]);
ERROR_LOG(GSP, "unknown command 0x%08X", (int)command.id.Value());
}
GX_FinishCommand(g_thread_id);
}
const Interface::FunctionInfo FunctionTable[] = {
{0x00010082, nullptr, "WriteHWRegs"},
{0x00010082, WriteHWRegs, "WriteHWRegs"},
{0x00020084, nullptr, "WriteHWRegsWithMask"},
{0x00030082, nullptr, "WriteHWRegRepeat"},
{0x00040080, ReadHWRegs, "ReadHWRegs"},

View File

@ -4,6 +4,7 @@
#pragma once
#include "common/bit_field.h"
#include "core/hle/service/service.h"
////////////////////////////////////////////////////////////////////////////////////////////////////
@ -12,21 +13,58 @@
namespace GSP_GPU {
enum class GXCommandId : u32 {
REQUEST_DMA = 0x00000000,
SET_COMMAND_LIST_LAST = 0x00000001,
SET_MEMORY_FILL = 0x00000002, // TODO: Confirm? (lictru uses 0x01000102)
SET_DISPLAY_TRANSFER = 0x00000003,
SET_TEXTURE_COPY = 0x00000004,
SET_COMMAND_LIST_FIRST = 0x00000005,
REQUEST_DMA = 0x00,
SET_COMMAND_LIST_LAST = 0x01,
// Fills a given memory range with a particular value
SET_MEMORY_FILL = 0x02,
// Copies an image and optionally performs color-conversion or scaling.
// This is highly similar to the GameCube's EFB copy feature
SET_DISPLAY_TRANSFER = 0x03,
// Conceptionally similar to SET_DISPLAY_TRANSFER and presumable uses the same hardware path
SET_TEXTURE_COPY = 0x04,
SET_COMMAND_LIST_FIRST = 0x05,
};
union GXCommand {
struct {
GXCommandId id;
struct GXCommand {
BitField<0, 8, GXCommandId> id;
union {
struct {
u32 source_address;
u32 dest_address;
u32 size;
} dma_request;
struct {
u32 address;
u32 size;
} set_command_list_last;
struct {
u32 start1;
u32 value1;
u32 end1;
u32 start2;
u32 value2;
u32 end2;
} memory_fill;
struct {
u32 in_buffer_address;
u32 out_buffer_address;
u32 in_buffer_size;
u32 out_buffer_size;
u32 flags;
} image_copy;
u8 raw_data[0x1C];
};
u32 data[0x20];
};
static_assert(sizeof(GXCommand) == 0x20, "GXCommand struct has incorrect size");
/// Interface to "srv:" service
class Interface : public Service::Interface {

View File

@ -15,48 +15,58 @@
namespace GPU {
Registers g_regs;
RegisterSet<u32, Regs> g_regs;
u64 g_last_ticks = 0; ///< Last CPU ticks
/**
* Sets whether the framebuffers are in the GSP heap (FCRAM) or VRAM
* @param
* @param
*/
void SetFramebufferLocation(const FramebufferLocation mode) {
switch (mode) {
case FRAMEBUFFER_LOCATION_FCRAM:
g_regs.framebuffer_top_left_1 = PADDR_TOP_LEFT_FRAME1;
g_regs.framebuffer_top_left_2 = PADDR_TOP_LEFT_FRAME2;
g_regs.framebuffer_top_right_1 = PADDR_TOP_RIGHT_FRAME1;
g_regs.framebuffer_top_right_2 = PADDR_TOP_RIGHT_FRAME2;
g_regs.framebuffer_sub_left_1 = PADDR_SUB_FRAME1;
//g_regs.framebuffer_sub_left_2 = unknown;
g_regs.framebuffer_sub_right_1 = PADDR_SUB_FRAME2;
//g_regs.framebufferr_sub_right_2 = unknown;
{
auto& framebuffer_top = g_regs.Get<Regs::FramebufferTop>();
auto& framebuffer_sub = g_regs.Get<Regs::FramebufferBottom>();
framebuffer_top.address_left1 = PADDR_TOP_LEFT_FRAME1;
framebuffer_top.address_left2 = PADDR_TOP_LEFT_FRAME2;
framebuffer_top.address_right1 = PADDR_TOP_RIGHT_FRAME1;
framebuffer_top.address_right2 = PADDR_TOP_RIGHT_FRAME2;
framebuffer_sub.address_left1 = PADDR_SUB_FRAME1;
//framebuffer_sub.address_left2 = unknown;
framebuffer_sub.address_right1 = PADDR_SUB_FRAME2;
//framebuffer_sub.address_right2 = unknown;
break;
}
case FRAMEBUFFER_LOCATION_VRAM:
g_regs.framebuffer_top_left_1 = PADDR_VRAM_TOP_LEFT_FRAME1;
g_regs.framebuffer_top_left_2 = PADDR_VRAM_TOP_LEFT_FRAME2;
g_regs.framebuffer_top_right_1 = PADDR_VRAM_TOP_RIGHT_FRAME1;
g_regs.framebuffer_top_right_2 = PADDR_VRAM_TOP_RIGHT_FRAME2;
g_regs.framebuffer_sub_left_1 = PADDR_VRAM_SUB_FRAME1;
//g_regs.framebuffer_sub_left_2 = unknown;
g_regs.framebuffer_sub_right_1 = PADDR_VRAM_SUB_FRAME2;
//g_regs.framebufferr_sub_right_2 = unknown;
{
auto& framebuffer_top = g_regs.Get<Regs::FramebufferTop>();
auto& framebuffer_sub = g_regs.Get<Regs::FramebufferBottom>();
framebuffer_top.address_left1 = PADDR_VRAM_TOP_LEFT_FRAME1;
framebuffer_top.address_left2 = PADDR_VRAM_TOP_LEFT_FRAME2;
framebuffer_top.address_right1 = PADDR_VRAM_TOP_RIGHT_FRAME1;
framebuffer_top.address_right2 = PADDR_VRAM_TOP_RIGHT_FRAME2;
framebuffer_sub.address_left1 = PADDR_VRAM_SUB_FRAME1;
//framebuffer_sub.address_left2 = unknown;
framebuffer_sub.address_right1 = PADDR_VRAM_SUB_FRAME2;
//framebuffer_sub.address_right2 = unknown;
break;
}
}
}
/**
* Gets the location of the framebuffers
* @return Location of framebuffers as FramebufferLocation enum
*/
const FramebufferLocation GetFramebufferLocation() {
if ((g_regs.framebuffer_top_right_1 & ~Memory::VRAM_MASK) == Memory::VRAM_PADDR) {
FramebufferLocation GetFramebufferLocation(u32 address) {
if ((address & ~Memory::VRAM_MASK) == Memory::VRAM_PADDR) {
return FRAMEBUFFER_LOCATION_VRAM;
} else if ((g_regs.framebuffer_top_right_1 & ~Memory::FCRAM_MASK) == Memory::FCRAM_PADDR) {
} else if ((address & ~Memory::FCRAM_MASK) == Memory::FCRAM_PADDR) {
return FRAMEBUFFER_LOCATION_FCRAM;
} else {
ERROR_LOG(GPU, "unknown framebuffer location!");
@ -64,91 +74,161 @@ const FramebufferLocation GetFramebufferLocation() {
return FRAMEBUFFER_LOCATION_UNKNOWN;
}
u32 GetFramebufferAddr(const u32 address) {
switch (GetFramebufferLocation(address)) {
case FRAMEBUFFER_LOCATION_FCRAM:
return Memory::VirtualAddressFromPhysical_FCRAM(address);
case FRAMEBUFFER_LOCATION_VRAM:
return Memory::VirtualAddressFromPhysical_VRAM(address);
default:
ERROR_LOG(GPU, "unknown framebuffer location");
}
return 0;
}
/**
* Gets a read-only pointer to a framebuffer in memory
* @param address Physical address of framebuffer
* @return Returns const pointer to raw framebuffer
*/
const u8* GetFramebufferPointer(const u32 address) {
switch (GetFramebufferLocation()) {
case FRAMEBUFFER_LOCATION_FCRAM:
return (const u8*)Memory::GetPointer(Memory::VirtualAddressFromPhysical_FCRAM(address));
case FRAMEBUFFER_LOCATION_VRAM:
return (const u8*)Memory::GetPointer(Memory::VirtualAddressFromPhysical_VRAM(address));
default:
ERROR_LOG(GPU, "unknown framebuffer location");
}
return NULL;
u32 addr = GetFramebufferAddr(address);
return (addr != 0) ? Memory::GetPointer(addr) : nullptr;
}
template <typename T>
inline void Read(T &var, const u32 addr) {
switch (addr) {
case Registers::FramebufferTopLeft1:
var = g_regs.framebuffer_top_left_1;
break;
inline void Read(T &var, const u32 raw_addr) {
u32 addr = raw_addr - 0x1EF00000;
int index = addr / 4;
case Registers::FramebufferTopLeft2:
var = g_regs.framebuffer_top_left_2;
break;
case Registers::FramebufferTopRight1:
var = g_regs.framebuffer_top_right_1;
break;
case Registers::FramebufferTopRight2:
var = g_regs.framebuffer_top_right_2;
break;
case Registers::FramebufferSubLeft1:
var = g_regs.framebuffer_sub_left_1;
break;
case Registers::FramebufferSubRight1:
var = g_regs.framebuffer_sub_right_1;
break;
case Registers::CommandListSize:
var = g_regs.command_list_size;
break;
case Registers::CommandListAddress:
var = g_regs.command_list_address;
break;
case Registers::ProcessCommandList:
var = g_regs.command_processing_enabled;
break;
default:
// Reads other than u32 are untested, so I'd rather have them abort than silently fail
if (index >= Regs::NumIds || !std::is_same<T,u32>::value)
{
ERROR_LOG(GPU, "unknown Read%d @ 0x%08X", sizeof(var) * 8, addr);
break;
return;
}
var = g_regs[static_cast<Regs::Id>(addr / 4)];
}
template <typename T>
inline void Write(u32 addr, const T data) {
switch (static_cast<Registers::Id>(addr)) {
case Registers::CommandListSize:
g_regs.command_list_size = data;
break;
addr -= 0x1EF00000;
int index = addr / 4;
case Registers::CommandListAddress:
g_regs.command_list_address = data;
break;
// Writes other than u32 are untested, so I'd rather have them abort than silently fail
if (index >= Regs::NumIds || !std::is_same<T,u32>::value)
{
ERROR_LOG(GPU, "unknown Write%d 0x%08X @ 0x%08X", sizeof(data) * 8, data, addr);
return;
}
case Registers::ProcessCommandList:
g_regs.command_processing_enabled = data;
if (g_regs.command_processing_enabled & 1)
g_regs[static_cast<Regs::Id>(index)] = data;
switch (static_cast<Regs::Id>(index)) {
// Memory fills are triggered once the fill value is written.
// NOTE: This is not verified.
case Regs::MemoryFill + 3:
case Regs::MemoryFill + 7:
{
const auto& config = g_regs.Get<Regs::MemoryFill>(static_cast<Regs::Id>(index - 3));
// TODO: Not sure if this check should be done at GSP level instead
if (config.address_start) {
// TODO: Not sure if this algorithm is correct, particularly because it doesn't use the size member at all
u32* start = (u32*)Memory::GetPointer(config.GetStartAddress());
u32* end = (u32*)Memory::GetPointer(config.GetEndAddress());
for (u32* ptr = start; ptr < end; ++ptr)
*ptr = bswap32(config.value); // TODO: This is just a workaround to missing framebuffer format emulation
DEBUG_LOG(GPU, "MemoryFill from 0x%08x to 0x%08x", config.GetStartAddress(), config.GetEndAddress());
}
break;
}
case Regs::DisplayTransfer + 6:
{
const auto& config = g_regs.Get<Regs::DisplayTransfer>();
if (config.trigger & 1) {
u8* source_pointer = Memory::GetPointer(config.GetPhysicalInputAddress());
u8* dest_pointer = Memory::GetPointer(config.GetPhysicalOutputAddress());
for (int y = 0; y < config.output_height; ++y) {
// TODO: Why does the register seem to hold twice the framebuffer width?
for (int x = 0; x < config.output_width / 2; ++x) {
struct {
int r, g, b, a;
} source_color = { 0, 0, 0, 0 };
switch (config.input_format) {
case Regs::FramebufferFormat::RGBA8:
{
// TODO: Most likely got the component order messed up.
u8* srcptr = source_pointer + x * 4 + y * config.input_width * 4 / 2;
source_color.r = srcptr[0]; // blue
source_color.g = srcptr[1]; // green
source_color.b = srcptr[2]; // red
source_color.a = srcptr[3]; // alpha
break;
}
default:
ERROR_LOG(GPU, "Unknown source framebuffer format %x", config.input_format.Value());
break;
}
switch (config.output_format) {
/*case Regs::FramebufferFormat::RGBA8:
{
// TODO: Untested
u8* dstptr = (u32*)(dest_pointer + x * 4 + y * config.output_width * 4);
dstptr[0] = source_color.r;
dstptr[1] = source_color.g;
dstptr[2] = source_color.b;
dstptr[3] = source_color.a;
break;
}*/
case Regs::FramebufferFormat::RGB8:
{
// TODO: Most likely got the component order messed up.
u8* dstptr = dest_pointer + x * 3 + y * config.output_width * 3 / 2;
dstptr[0] = source_color.r; // blue
dstptr[1] = source_color.g; // green
dstptr[2] = source_color.b; // red
break;
}
default:
ERROR_LOG(GPU, "Unknown destination framebuffer format %x", config.output_format.Value());
break;
}
}
}
DEBUG_LOG(GPU, "DisplayTriggerTransfer: 0x%08x bytes from 0x%08x(%dx%d)-> 0x%08x(%dx%d), dst format %x",
config.output_height * config.output_width * 4,
config.GetPhysicalInputAddress(), (int)config.input_width, (int)config.input_height,
config.GetPhysicalOutputAddress(), (int)config.output_width, (int)config.output_height,
config.output_format.Value());
}
break;
}
case Regs::CommandProcessor + 4:
{
const auto& config = g_regs.Get<Regs::CommandProcessor>();
if (config.trigger & 1)
{
// u32* buffer = (u32*)Memory::GetPointer(g_regs.command_list_address << 3);
ERROR_LOG(GPU, "Beginning %x bytes of commands from address %x", g_regs.command_list_size, g_regs.command_list_address << 3);
// u32* buffer = (u32*)Memory::GetPointer(config.address << 3);
ERROR_LOG(GPU, "Beginning 0x%08x bytes of commands from address 0x%08x", config.size, config.address << 3);
// TODO: Process command list!
}
break;
}
default:
ERROR_LOG(GPU, "unknown Write%d 0x%08X @ 0x%08X", sizeof(data) * 8, data, addr);
break;
}
}
@ -180,7 +260,24 @@ void Update() {
/// Initialize hardware
void Init() {
g_last_ticks = Core::g_app_core->GetTicks();
SetFramebufferLocation(FRAMEBUFFER_LOCATION_FCRAM);
// SetFramebufferLocation(FRAMEBUFFER_LOCATION_FCRAM);
SetFramebufferLocation(FRAMEBUFFER_LOCATION_VRAM);
auto& framebuffer_top = g_regs.Get<Regs::FramebufferTop>();
auto& framebuffer_sub = g_regs.Get<Regs::FramebufferBottom>();
// TODO: Width should be 240 instead?
framebuffer_top.width = 480;
framebuffer_top.height = 400;
framebuffer_top.stride = 480*3;
framebuffer_top.color_format = Regs::FramebufferFormat::RGB8;
framebuffer_top.active_fb = 0;
framebuffer_sub.width = 480;
framebuffer_sub.height = 400;
framebuffer_sub.stride = 480*3;
framebuffer_sub.color_format = Regs::FramebufferFormat::RGB8;
framebuffer_sub.active_fb = 0;
NOTICE_LOG(GPU, "initialized OK");
}

View File

@ -5,43 +5,168 @@
#pragma once
#include "common/common_types.h"
#include "common/bit_field.h"
#include "common/register_set.h"
namespace GPU {
static const u32 kFrameCycles = 268123480 / 60; ///< 268MHz / 60 frames per second
static const u32 kFrameTicks = kFrameCycles / 3; ///< Approximate number of instructions/frame
struct Registers {
// MMIO region 0x1EFxxxxx
struct Regs {
enum Id : u32 {
FramebufferTopLeft1 = 0x1EF00468, // Main LCD, first framebuffer for 3D left
FramebufferTopLeft2 = 0x1EF0046C, // Main LCD, second framebuffer for 3D left
FramebufferTopRight1 = 0x1EF00494, // Main LCD, first framebuffer for 3D right
FramebufferTopRight2 = 0x1EF00498, // Main LCD, second framebuffer for 3D right
FramebufferSubLeft1 = 0x1EF00568, // Sub LCD, first framebuffer
FramebufferSubLeft2 = 0x1EF0056C, // Sub LCD, second framebuffer
FramebufferSubRight1 = 0x1EF00594, // Sub LCD, unused first framebuffer
FramebufferSubRight2 = 0x1EF00598, // Sub LCD, unused second framebuffer
MemoryFill = 0x00004, // + 5,6,7; second block at 8-11
CommandListSize = 0x1EF018E0,
CommandListAddress = 0x1EF018E8,
ProcessCommandList = 0x1EF018F0,
FramebufferTop = 0x00117, // + 11a,11b,11c,11d(?),11e...126
FramebufferBottom = 0x00157, // + 15a,15b,15c,15d(?),15e...166
DisplayTransfer = 0x00300, // + 301,302,303,304,305,306
CommandProcessor = 0x00638, // + 63a,63c
NumIds = 0x01000
};
u32 framebuffer_top_left_1;
u32 framebuffer_top_left_2;
u32 framebuffer_top_right_1;
u32 framebuffer_top_right_2;
u32 framebuffer_sub_left_1;
u32 framebuffer_sub_left_2;
u32 framebuffer_sub_right_1;
u32 framebuffer_sub_right_2;
template<Id id>
struct Struct;
u32 command_list_size;
u32 command_list_address;
u32 command_processing_enabled;
enum class FramebufferFormat : u32 {
RGBA8 = 0,
RGB8 = 1,
RGB565 = 2,
RGB5A1 = 3,
RGBA4 = 4,
};
};
extern Registers g_regs;
template<>
struct Regs::Struct<Regs::MemoryFill> {
u32 address_start;
u32 address_end; // ?
u32 size;
u32 value; // ?
inline u32 GetStartAddress() const {
return address_start * 8;
}
inline u32 GetEndAddress() const {
return address_end * 8;
}
};
static_assert(sizeof(Regs::Struct<Regs::MemoryFill>) == 0x10, "Structure size and register block length don't match");
template<>
struct Regs::Struct<Regs::FramebufferTop> {
using Format = Regs::FramebufferFormat;
union {
u32 size;
BitField< 0, 16, u32> width;
BitField<16, 16, u32> height;
};
u32 pad0[2];
u32 address_left1;
u32 address_left2;
union {
u32 format;
BitField< 0, 3, Format> color_format;
};
u32 pad1;
union {
u32 active_fb;
// 0: Use parameters ending with "1"
// 1: Use parameters ending with "2"
BitField<0, 1, u32> second_fb_active;
};
u32 pad2[5];
// Distance between two pixel rows, in bytes
u32 stride;
u32 address_right1;
u32 address_right2;
};
template<>
struct Regs::Struct<Regs::FramebufferBottom> : public Regs::Struct<Regs::FramebufferTop> {
};
static_assert(sizeof(Regs::Struct<Regs::FramebufferTop>) == 0x40, "Structure size and register block length don't match");
template<>
struct Regs::Struct<Regs::DisplayTransfer> {
using Format = Regs::FramebufferFormat;
u32 input_address;
u32 output_address;
inline u32 GetPhysicalInputAddress() const {
return input_address * 8;
}
inline u32 GetPhysicalOutputAddress() const {
return output_address * 8;
}
union {
u32 output_size;
BitField< 0, 16, u32> output_width;
BitField<16, 16, u32> output_height;
};
union {
u32 input_size;
BitField< 0, 16, u32> input_width;
BitField<16, 16, u32> input_height;
};
union {
u32 flags;
BitField< 0, 1, u32> flip_data; // flips input data horizontally (TODO) if true
BitField< 8, 3, Format> input_format;
BitField<12, 3, Format> output_format;
BitField<16, 1, u32> output_tiled; // stores output in a tiled format
};
u32 unknown;
// it seems that writing to this field triggers the display transfer
u32 trigger;
};
static_assert(sizeof(Regs::Struct<Regs::DisplayTransfer>) == 0x1C, "Structure size and register block length don't match");
template<>
struct Regs::Struct<Regs::CommandProcessor> {
// command list size
u32 size;
u32 pad0;
// command list address
u32 address;
u32 pad1;
// it seems that writing to this field triggers command list processing
u32 trigger;
};
static_assert(sizeof(Regs::Struct<Regs::CommandProcessor>) == 0x14, "Structure size and register block length don't match");
extern RegisterSet<u32, Regs> g_regs;
enum {
TOP_ASPECT_X = 0x5,
@ -51,23 +176,35 @@ enum {
TOP_WIDTH = 400,
BOTTOM_WIDTH = 320,
// Physical addresses in FCRAM used by ARM9 applications - these are correct for real hardware
PADDR_FRAMEBUFFER_SEL = 0x20184E59,
PADDR_TOP_LEFT_FRAME1 = 0x20184E60,
// Physical addresses in FCRAM (chosen arbitrarily)
PADDR_TOP_LEFT_FRAME1 = 0x201D4C00,
PADDR_TOP_LEFT_FRAME2 = 0x202D4C00,
PADDR_TOP_RIGHT_FRAME1 = 0x203D4C00,
PADDR_TOP_RIGHT_FRAME2 = 0x204D4C00,
PADDR_SUB_FRAME1 = 0x205D4C00,
PADDR_SUB_FRAME2 = 0x206D4C00,
// Physical addresses in FCRAM used by ARM9 applications
/* PADDR_TOP_LEFT_FRAME1 = 0x20184E60,
PADDR_TOP_LEFT_FRAME2 = 0x201CB370,
PADDR_TOP_RIGHT_FRAME1 = 0x20282160,
PADDR_TOP_RIGHT_FRAME2 = 0x202C8670,
PADDR_SUB_FRAME1 = 0x202118E0,
PADDR_SUB_FRAME2 = 0x20249CF0,
PADDR_SUB_FRAME2 = 0x20249CF0,*/
// Physical addresses in VRAM - I'm not sure how these are actually allocated (so not real)
PADDR_VRAM_FRAMEBUFFER_SEL = 0x18184E59,
PADDR_VRAM_TOP_LEFT_FRAME1 = 0x18184E60,
PADDR_VRAM_TOP_LEFT_FRAME2 = 0x181CB370,
// Physical addresses in VRAM
// TODO: These should just be deduced from the ones above
PADDR_VRAM_TOP_LEFT_FRAME1 = 0x181D4C00,
PADDR_VRAM_TOP_LEFT_FRAME2 = 0x182D4C00,
PADDR_VRAM_TOP_RIGHT_FRAME1 = 0x183D4C00,
PADDR_VRAM_TOP_RIGHT_FRAME2 = 0x184D4C00,
PADDR_VRAM_SUB_FRAME1 = 0x185D4C00,
PADDR_VRAM_SUB_FRAME2 = 0x186D4C00,
// Physical addresses in VRAM used by ARM9 applications
/* PADDR_VRAM_TOP_LEFT_FRAME2 = 0x181CB370,
PADDR_VRAM_TOP_RIGHT_FRAME1 = 0x18282160,
PADDR_VRAM_TOP_RIGHT_FRAME2 = 0x182C8670,
PADDR_VRAM_SUB_FRAME1 = 0x182118E0,
PADDR_VRAM_SUB_FRAME2 = 0x18249CF0,
PADDR_VRAM_SUB_FRAME2 = 0x18249CF0,*/
};
/// Framebuffer location
@ -79,7 +216,7 @@ enum FramebufferLocation {
/**
* Sets whether the framebuffers are in the GSP heap (FCRAM) or VRAM
* @param
* @param
*/
void SetFramebufferLocation(const FramebufferLocation mode);
@ -90,16 +227,18 @@ void SetFramebufferLocation(const FramebufferLocation mode);
*/
const u8* GetFramebufferPointer(const u32 address);
u32 GetFramebufferAddr(const u32 address);
/**
* Gets the location of the framebuffers
*/
const FramebufferLocation GetFramebufferLocation();
FramebufferLocation GetFramebufferLocation(u32 address);
template <typename T>
inline void Read(T &var, const u32 addr);
void Read(T &var, const u32 addr);
template <typename T>
inline void Write(u32 addr, const T data);
void Write(u32 addr, const T data);
/// Update hardware
void Update();

View File

@ -9,10 +9,10 @@
namespace HW {
template <typename T>
inline void Read(T &var, const u32 addr);
void Read(T &var, const u32 addr);
template <typename T>
inline void Write(u32 addr, const T data);
void Write(u32 addr, const T data);
/// Update hardware
void Update();

View File

@ -50,7 +50,7 @@ public:
virtual void GXCommandProcessed(int total_command_count)
{
const GSP_GPU::GXCommand& cmd = observed->ReadGXCommandHistory(total_command_count-1);
ERROR_LOG(GSP, "Received command: id=%x", cmd.id);
ERROR_LOG(GSP, "Received command: id=%x", (int)cmd.id.Value());
}
/**
@ -78,11 +78,13 @@ public:
void GXCommandProcessed(u8* command_data)
{
if (observers.empty())
return;
gx_command_history.push_back(GSP_GPU::GXCommand());
GSP_GPU::GXCommand& cmd = gx_command_history[gx_command_history.size()-1];
const int cmd_length = sizeof(GSP_GPU::GXCommand);
memcpy(cmd.data, command_data, cmd_length);
memcpy(&cmd, command_data, sizeof(GSP_GPU::GXCommand));
ForEachObserver([this](DebuggerObserver* observer) {
observer->GXCommandProcessed(this->gx_command_history.size());
@ -91,6 +93,9 @@ public:
void CommandListCalled(u32 address, u32* command_list, u32 size_in_words)
{
if (observers.empty())
return;
PicaCommandList cmdlist;
for (u32* parse_pointer = command_list; parse_pointer < command_list + size_in_words;)
{

View File

@ -12,8 +12,8 @@
/// RendererOpenGL constructor
RendererOpenGL::RendererOpenGL() {
memset(m_fbo, 0, sizeof(m_fbo));
memset(m_fbo_rbo, 0, sizeof(m_fbo_rbo));
memset(m_fbo, 0, sizeof(m_fbo));
memset(m_fbo_rbo, 0, sizeof(m_fbo_rbo));
memset(m_fbo_depth_buffers, 0, sizeof(m_fbo_depth_buffers));
m_resolution_width = max(VideoCore::kScreenTopWidth, VideoCore::kScreenBottomWidth);
@ -35,7 +35,7 @@ void RendererOpenGL::SwapBuffers() {
m_render_window->MakeCurrent();
// EFB->XFB copy
// TODO(bunnei): This is a hack and does not belong here. The copy should be triggered by some
// TODO(bunnei): This is a hack and does not belong here. The copy should be triggered by some
// register write We're also treating both framebuffers as a single one in OpenGL.
common::Rect framebuffer_size(0, 0, m_resolution_width, m_resolution_height);
RenderXFB(framebuffer_size, framebuffer_size);
@ -61,24 +61,40 @@ void RendererOpenGL::FlipFramebuffer(const u8* in, u8* out) {
int in_coord = 0;
for (int x = 0; x < VideoCore::kScreenTopWidth; x++) {
for (int y = VideoCore::kScreenTopHeight-1; y >= 0; y--) {
// TODO: Properly support other framebuffer formats
int out_coord = (x + y * VideoCore::kScreenTopWidth) * 3;
out[out_coord] = in[in_coord];
out[out_coord + 1] = in[in_coord + 1];
out[out_coord + 2] = in[in_coord + 2];
out[out_coord] = in[in_coord]; // blue?
out[out_coord + 1] = in[in_coord + 1]; // green?
out[out_coord + 2] = in[in_coord + 2]; // red?
in_coord+=3;
}
}
}
/**
/**
* Renders external framebuffer (XFB)
* @param src_rect Source rectangle in XFB to copy
* @param dst_rect Destination rectangle in output framebuffer to copy to
*/
void RendererOpenGL::RenderXFB(const common::Rect& src_rect, const common::Rect& dst_rect) {
FlipFramebuffer(GPU::GetFramebufferPointer(GPU::g_regs.framebuffer_top_left_1), m_xfb_top_flipped);
FlipFramebuffer(GPU::GetFramebufferPointer(GPU::g_regs.framebuffer_sub_left_1), m_xfb_bottom_flipped);
const auto& framebuffer_top = GPU::g_regs.Get<GPU::Regs::FramebufferTop>();
const auto& framebuffer_sub = GPU::g_regs.Get<GPU::Regs::FramebufferBottom>();
const u32 active_fb_top = (framebuffer_top.active_fb == 1)
? framebuffer_top.address_left2
: framebuffer_top.address_left1;
const u32 active_fb_sub = (framebuffer_sub.active_fb == 1)
? framebuffer_sub.address_left2
: framebuffer_sub.address_left1;
DEBUG_LOG(GPU, "RenderXFB: 0x%08x bytes from 0x%08x(%dx%d), fmt %x",
framebuffer_top.stride * framebuffer_top.height,
GPU::GetFramebufferAddr(active_fb_top), (int)framebuffer_top.width,
(int)framebuffer_top.height, (int)framebuffer_top.format);
// TODO: This should consider the GPU registers for framebuffer width, height and stride.
FlipFramebuffer(GPU::GetFramebufferPointer(active_fb_top), m_xfb_top_flipped);
FlipFramebuffer(GPU::GetFramebufferPointer(active_fb_sub), m_xfb_bottom_flipped);
// Blit the top framebuffer
// ------------------------
@ -98,7 +114,7 @@ void RendererOpenGL::RenderXFB(const common::Rect& src_rect, const common::Rect&
glReadBuffer(GL_COLOR_ATTACHMENT0);
// Blit
glBlitFramebuffer(src_rect.x0_, src_rect.y0_, src_rect.x1_, src_rect.y1_,
glBlitFramebuffer(src_rect.x0_, src_rect.y0_, src_rect.x1_, src_rect.y1_,
dst_rect.x0_, dst_rect.y1_, dst_rect.x1_, dst_rect.y0_,
GL_COLOR_BUFFER_BIT, GL_LINEAR);
@ -110,7 +126,7 @@ void RendererOpenGL::RenderXFB(const common::Rect& src_rect, const common::Rect&
// Update textures with contents of XFB in RAM - bottom
glBindTexture(GL_TEXTURE_2D, m_xfb_texture_bottom);
glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, VideoCore::kScreenTopWidth, VideoCore::kScreenTopHeight,
GL_RGB, GL_UNSIGNED_BYTE, m_xfb_bottom_flipped);
GL_BGR, GL_UNSIGNED_BYTE, m_xfb_bottom_flipped);
glBindTexture(GL_TEXTURE_2D, 0);
// Render target is destination framebuffer
@ -124,7 +140,7 @@ void RendererOpenGL::RenderXFB(const common::Rect& src_rect, const common::Rect&
// Blit
int offset = (VideoCore::kScreenTopWidth - VideoCore::kScreenBottomWidth) / 2;
glBlitFramebuffer(0,0, VideoCore::kScreenBottomWidth, VideoCore::kScreenBottomHeight,
glBlitFramebuffer(0,0, VideoCore::kScreenBottomWidth, VideoCore::kScreenBottomHeight,
offset, VideoCore::kScreenBottomHeight, VideoCore::kScreenBottomWidth + offset, 0,
GL_COLOR_BUFFER_BIT, GL_LINEAR);
@ -133,7 +149,7 @@ void RendererOpenGL::RenderXFB(const common::Rect& src_rect, const common::Rect&
/// Initialize the FBO
void RendererOpenGL::InitFramebuffer() {
// TODO(bunnei): This should probably be implemented with the top screen and bottom screen as
// TODO(bunnei): This should probably be implemented with the top screen and bottom screen as
// separate framebuffers
// Init the FBOs
@ -146,12 +162,12 @@ void RendererOpenGL::InitFramebuffer() {
for (int i = 0; i < kMaxFramebuffers; i++) {
// Generate color buffer storage
glBindRenderbuffer(GL_RENDERBUFFER, m_fbo_rbo[i]);
glRenderbufferStorage(GL_RENDERBUFFER, GL_RGBA8, VideoCore::kScreenTopWidth,
glRenderbufferStorage(GL_RENDERBUFFER, GL_RGBA8, VideoCore::kScreenTopWidth,
VideoCore::kScreenTopHeight + VideoCore::kScreenBottomHeight);
// Generate depth buffer storage
glBindRenderbuffer(GL_RENDERBUFFER, m_fbo_depth_buffers[i]);
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT32, VideoCore::kScreenTopWidth,
glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT32, VideoCore::kScreenTopWidth,
VideoCore::kScreenTopHeight + VideoCore::kScreenBottomHeight);
// Attach the buffers
@ -167,7 +183,7 @@ void RendererOpenGL::InitFramebuffer() {
} else {
ERROR_LOG(RENDER, "couldn't create OpenGL frame buffer");
exit(1);
}
}
}
glBindFramebuffer(GL_FRAMEBUFFER, 0); // Unbind our frame buffer(s)
@ -175,8 +191,8 @@ void RendererOpenGL::InitFramebuffer() {
// -------------------------------
// Create XFB textures
glGenTextures(1, &m_xfb_texture_top);
glGenTextures(1, &m_xfb_texture_bottom);
glGenTextures(1, &m_xfb_texture_top);
glGenTextures(1, &m_xfb_texture_bottom);
// Alocate video memorry for XFB textures
glBindTexture(GL_TEXTURE_2D, m_xfb_texture_top);
@ -192,13 +208,13 @@ void RendererOpenGL::InitFramebuffer() {
// Create the FBO and attach color/depth textures
glGenFramebuffers(1, &m_xfb_top); // Generate framebuffer
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_xfb_top);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
m_xfb_texture_top, 0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
glGenFramebuffers(1, &m_xfb_bottom); // Generate framebuffer
glBindFramebuffer(GL_DRAW_FRAMEBUFFER, m_xfb_bottom);
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
glFramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
m_xfb_texture_bottom, 0);
glBindFramebuffer(GL_FRAMEBUFFER, 0);
}
@ -214,7 +230,7 @@ void RendererOpenGL::RenderFramebuffer() {
glReadBuffer(GL_COLOR_ATTACHMENT0);
// Blit
glBlitFramebuffer(0, 0, m_resolution_width, m_resolution_height, 0, 0, m_resolution_width,
glBlitFramebuffer(0, 0, m_resolution_width, m_resolution_height, 0, 0, m_resolution_width,
m_resolution_height, GL_COLOR_BUFFER_BIT, GL_LINEAR);
// Update the FPS count
@ -230,7 +246,7 @@ void RendererOpenGL::RenderFramebuffer() {
void RendererOpenGL::UpdateFramerate() {
}
/**
/**
* Set the emulator window to use for renderer
* @param window EmuWindow handle to emulator window to use for rendering
*/
@ -264,7 +280,7 @@ void RendererOpenGL::Init() {
GLenum err = glewInit();
if (GLEW_OK != err) {
ERROR_LOG(RENDER, "Failed to initialize GLEW! Error message: \"%s\". Exiting...",
ERROR_LOG(RENDER, "Failed to initialize GLEW! Error message: \"%s\". Exiting...",
glewGetErrorString(err));
exit(-1);
}

View File

@ -84,7 +84,6 @@ private:
// "Flipped" framebuffers translate scanlines from native 3DS left-to-right to top-to-bottom
// as OpenGL expects them in a texture. There probably is a more efficient way of doing this:
u8 m_xfb_top_flipped[VideoCore::kScreenTopWidth * VideoCore::kScreenTopWidth * 4];
u8 m_xfb_bottom_flipped[VideoCore::kScreenTopWidth * VideoCore::kScreenTopWidth * 4];
};
u8 m_xfb_top_flipped[VideoCore::kScreenTopWidth * VideoCore::kScreenTopHeight * 4];
u8 m_xfb_bottom_flipped[VideoCore::kScreenBottomWidth * VideoCore::kScreenBottomHeight * 4];
};