yuzu-emu
/
yuzu
Archived
1
0
Fork 0

core: Various changes to support 64-bit addressing.

This commit is contained in:
bunnei 2017-09-01 23:10:03 -04:00
parent 3411883fe3
commit f01472a5ff
5 changed files with 54 additions and 54 deletions

View File

@ -56,7 +56,7 @@ void VMManager::Reset() {
initial_vma.size = MAX_ADDRESS; initial_vma.size = MAX_ADDRESS;
vma_map.emplace(initial_vma.base, initial_vma); vma_map.emplace(initial_vma.base, initial_vma);
UpdatePageTableForVMA(initial_vma); //UpdatePageTableForVMA(initial_vma);
} }
VMManager::VMAHandle VMManager::FindVMA(VAddr target) const { VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
@ -69,7 +69,7 @@ VMManager::VMAHandle VMManager::FindVMA(VAddr target) const {
ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target, ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
std::shared_ptr<std::vector<u8>> block, std::shared_ptr<std::vector<u8>> block,
size_t offset, u32 size, size_t offset, u64 size,
MemoryState state) { MemoryState state) {
ASSERT(block != nullptr); ASSERT(block != nullptr);
ASSERT(offset + size <= block->size()); ASSERT(offset + size <= block->size());
@ -89,7 +89,7 @@ ResultVal<VMManager::VMAHandle> VMManager::MapMemoryBlock(VAddr target,
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle)); return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
} }
ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8* memory, u32 size, ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8* memory, u64 size,
MemoryState state) { MemoryState state) {
ASSERT(memory != nullptr); ASSERT(memory != nullptr);
@ -107,7 +107,7 @@ ResultVal<VMManager::VMAHandle> VMManager::MapBackingMemory(VAddr target, u8* me
return MakeResult<VMAHandle>(MergeAdjacent(vma_handle)); return MakeResult<VMAHandle>(MergeAdjacent(vma_handle));
} }
ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u32 size, ResultVal<VMManager::VMAHandle> VMManager::MapMMIO(VAddr target, PAddr paddr, u64 size,
MemoryState state, MemoryState state,
Memory::MMIORegionPointer mmio_handler) { Memory::MMIORegionPointer mmio_handler) {
// This is the appropriately sized VMA that will turn into our allocation. // This is the appropriately sized VMA that will turn into our allocation.
@ -141,7 +141,7 @@ VMManager::VMAIter VMManager::Unmap(VMAIter vma_handle) {
return MergeAdjacent(vma_handle); return MergeAdjacent(vma_handle);
} }
ResultCode VMManager::UnmapRange(VAddr target, u32 size) { ResultCode VMManager::UnmapRange(VAddr target, u64 size) {
CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size)); CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
VAddr target_end = target + size; VAddr target_end = target + size;
@ -166,7 +166,7 @@ VMManager::VMAHandle VMManager::Reprotect(VMAHandle vma_handle, VMAPermission ne
return MergeAdjacent(iter); return MergeAdjacent(iter);
} }
ResultCode VMManager::ReprotectRange(VAddr target, u32 size, VMAPermission new_perms) { ResultCode VMManager::ReprotectRange(VAddr target, u64 size, VMAPermission new_perms) {
CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size)); CASCADE_RESULT(VMAIter vma, CarveVMARange(target, size));
VAddr target_end = target + size; VAddr target_end = target + size;
@ -209,7 +209,7 @@ VMManager::VMAIter VMManager::StripIterConstness(const VMAHandle& iter) {
return vma_map.erase(iter, iter); // Erases an empty range of elements return vma_map.erase(iter, iter); // Erases an empty range of elements
} }
ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) { ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u64 size) {
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size); ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size);
ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", base); ASSERT_MSG((base & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", base);
@ -225,8 +225,8 @@ ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) {
return ERR_INVALID_ADDRESS_STATE; return ERR_INVALID_ADDRESS_STATE;
} }
u32 start_in_vma = base - vma.base; u64 start_in_vma = base - vma.base;
u32 end_in_vma = start_in_vma + size; u64 end_in_vma = start_in_vma + size;
if (end_in_vma > vma.size) { if (end_in_vma > vma.size) {
// Requested allocation doesn't fit inside VMA // Requested allocation doesn't fit inside VMA
@ -245,7 +245,7 @@ ResultVal<VMManager::VMAIter> VMManager::CarveVMA(VAddr base, u32 size) {
return MakeResult<VMAIter>(vma_handle); return MakeResult<VMAIter>(vma_handle);
} }
ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u32 size) { ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u64 size) {
ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size); ASSERT_MSG((size & Memory::PAGE_MASK) == 0, "non-page aligned size: 0x%8X", size);
ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", target); ASSERT_MSG((target & Memory::PAGE_MASK) == 0, "non-page aligned base: 0x%08X", target);
@ -274,7 +274,7 @@ ResultVal<VMManager::VMAIter> VMManager::CarveVMARange(VAddr target, u32 size) {
return MakeResult<VMAIter>(begin_vma); return MakeResult<VMAIter>(begin_vma);
} }
VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u32 offset_in_vma) { VMManager::VMAIter VMManager::SplitVMA(VMAIter vma_handle, u64 offset_in_vma) {
VirtualMemoryArea& old_vma = vma_handle->second; VirtualMemoryArea& old_vma = vma_handle->second;
VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA VirtualMemoryArea new_vma = old_vma; // Make a copy of the VMA

View File

@ -63,7 +63,7 @@ struct VirtualMemoryArea {
/// Virtual base address of the region. /// Virtual base address of the region.
VAddr base = 0; VAddr base = 0;
/// Size of the region. /// Size of the region.
u32 size = 0; u64 size = 0;
VMAType type = VMAType::Free; VMAType type = VMAType::Free;
VMAPermission permissions = VMAPermission::None; VMAPermission permissions = VMAPermission::None;
@ -109,7 +109,7 @@ public:
* used. * used.
* @note This is the limit used by the New 3DS kernel. Old 3DS used 0x20000000. * @note This is the limit used by the New 3DS kernel. Old 3DS used 0x20000000.
*/ */
static const u32 MAX_ADDRESS = 0x40000000; static const VAddr MAX_ADDRESS = 0x8000000000;
/** /**
* A map covering the entirety of the managed address space, keyed by the `base` field of each * A map covering the entirety of the managed address space, keyed by the `base` field of each
@ -142,7 +142,7 @@ public:
* @param state MemoryState tag to attach to the VMA. * @param state MemoryState tag to attach to the VMA.
*/ */
ResultVal<VMAHandle> MapMemoryBlock(VAddr target, std::shared_ptr<std::vector<u8>> block, ResultVal<VMAHandle> MapMemoryBlock(VAddr target, std::shared_ptr<std::vector<u8>> block,
size_t offset, u32 size, MemoryState state); size_t offset, u64 size, MemoryState state);
/** /**
* Maps an unmanaged host memory pointer at a given address. * Maps an unmanaged host memory pointer at a given address.
@ -152,7 +152,7 @@ public:
* @param size Size of the mapping. * @param size Size of the mapping.
* @param state MemoryState tag to attach to the VMA. * @param state MemoryState tag to attach to the VMA.
*/ */
ResultVal<VMAHandle> MapBackingMemory(VAddr target, u8* memory, u32 size, MemoryState state); ResultVal<VMAHandle> MapBackingMemory(VAddr target, u8* memory, u64 size, MemoryState state);
/** /**
* Maps a memory-mapped IO region at a given address. * Maps a memory-mapped IO region at a given address.
@ -163,17 +163,17 @@ public:
* @param state MemoryState tag to attach to the VMA. * @param state MemoryState tag to attach to the VMA.
* @param mmio_handler The handler that will implement read and write for this MMIO region. * @param mmio_handler The handler that will implement read and write for this MMIO region.
*/ */
ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u32 size, MemoryState state, ResultVal<VMAHandle> MapMMIO(VAddr target, PAddr paddr, u64 size, MemoryState state,
Memory::MMIORegionPointer mmio_handler); Memory::MMIORegionPointer mmio_handler);
/// Unmaps a range of addresses, splitting VMAs as necessary. /// Unmaps a range of addresses, splitting VMAs as necessary.
ResultCode UnmapRange(VAddr target, u32 size); ResultCode UnmapRange(VAddr target, u64 size);
/// Changes the permissions of the given VMA. /// Changes the permissions of the given VMA.
VMAHandle Reprotect(VMAHandle vma, VMAPermission new_perms); VMAHandle Reprotect(VMAHandle vma, VMAPermission new_perms);
/// Changes the permissions of a range of addresses, splitting VMAs as necessary. /// Changes the permissions of a range of addresses, splitting VMAs as necessary.
ResultCode ReprotectRange(VAddr target, u32 size, VMAPermission new_perms); ResultCode ReprotectRange(VAddr target, u64 size, VMAPermission new_perms);
/** /**
* Scans all VMAs and updates the page table range of any that use the given vector as backing * Scans all VMAs and updates the page table range of any that use the given vector as backing
@ -197,19 +197,19 @@ private:
* Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing * Carves a VMA of a specific size at the specified address by splitting Free VMAs while doing
* the appropriate error checking. * the appropriate error checking.
*/ */
ResultVal<VMAIter> CarveVMA(VAddr base, u32 size); ResultVal<VMAIter> CarveVMA(VAddr base, u64 size);
/** /**
* Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each * Splits the edges of the given range of non-Free VMAs so that there is a VMA split at each
* end of the range. * end of the range.
*/ */
ResultVal<VMAIter> CarveVMARange(VAddr base, u32 size); ResultVal<VMAIter> CarveVMARange(VAddr base, u64 size);
/** /**
* Splits a VMA in two, at the specified offset. * Splits a VMA in two, at the specified offset.
* @returns the right side of the split, with the original iterator becoming the left side. * @returns the right side of the split, with the original iterator becoming the left side.
*/ */
VMAIter SplitVMA(VMAIter vma, u32 offset_in_vma); VMAIter SplitVMA(VMAIter vma, u64 offset_in_vma);
/** /**
* Checks for and merges the specified VMA with adjacent ones if possible. * Checks for and merges the specified VMA with adjacent ones if possible.

View File

@ -34,7 +34,7 @@ enum class PageType {
struct SpecialRegion { struct SpecialRegion {
VAddr base; VAddr base;
u32 size; u64 size;
MMIORegionPointer handler; MMIORegionPointer handler;
}; };
@ -49,7 +49,7 @@ struct PageTable {
* Array of memory pointers backing each page. An entry can only be non-null if the * Array of memory pointers backing each page. An entry can only be non-null if the
* corresponding entry in the `attributes` array is of type `Memory`. * corresponding entry in the `attributes` array is of type `Memory`.
*/ */
std::array<u8*, PAGE_TABLE_NUM_ENTRIES> pointers; std::map<u64, u8*> pointers;
/** /**
* Contains MMIO handlers that back memory regions whose entries in the `attribute` array is of * Contains MMIO handlers that back memory regions whose entries in the `attribute` array is of
@ -61,13 +61,13 @@ struct PageTable {
* Array of fine grained page attributes. If it is set to any value other than `Memory`, then * Array of fine grained page attributes. If it is set to any value other than `Memory`, then
* the corresponding entry in `pointers` MUST be set to null. * the corresponding entry in `pointers` MUST be set to null.
*/ */
std::array<PageType, PAGE_TABLE_NUM_ENTRIES> attributes; std::map<u64, PageType> attributes;
/** /**
* Indicates the number of externally cached resources touching a page that should be * Indicates the number of externally cached resources touching a page that should be
* flushed before the memory is accessed * flushed before the memory is accessed
*/ */
std::array<u8, PAGE_TABLE_NUM_ENTRIES> cached_res_count; std::map<u64, u8> cached_res_count;
}; };
/// Singular page table used for the singleton process /// Singular page table used for the singleton process
@ -75,18 +75,18 @@ static PageTable main_page_table;
/// Currently active page table /// Currently active page table
static PageTable* current_page_table = &main_page_table; static PageTable* current_page_table = &main_page_table;
std::array<u8*, PAGE_TABLE_NUM_ENTRIES>* GetCurrentPageTablePointers() { //std::array<u8*, PAGE_TABLE_NUM_ENTRIES>* GetCurrentPageTablePointers() {
return &current_page_table->pointers; // return &current_page_table->pointers;
} //}
static void MapPages(u32 base, u32 size, u8* memory, PageType type) { static void MapPages(u64 base, u64 size, u8* memory, PageType type) {
LOG_DEBUG(HW_Memory, "Mapping %p onto %08X-%08X", memory, base * PAGE_SIZE, LOG_DEBUG(HW_Memory, "Mapping %p onto %08X-%08X", memory, base * PAGE_SIZE,
(base + size) * PAGE_SIZE); (base + size) * PAGE_SIZE);
RasterizerFlushVirtualRegion(base << PAGE_BITS, size * PAGE_SIZE, RasterizerFlushVirtualRegion(base << PAGE_BITS, size * PAGE_SIZE,
FlushMode::FlushAndInvalidate); FlushMode::FlushAndInvalidate);
u32 end = base + size; u64 end = base + size;
while (base != end) { while (base != end) {
ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at %08X", base); ASSERT_MSG(base < PAGE_TABLE_NUM_ENTRIES, "out of range mapping at %08X", base);
@ -101,18 +101,18 @@ static void MapPages(u32 base, u32 size, u8* memory, PageType type) {
} }
void InitMemoryMap() { void InitMemoryMap() {
main_page_table.pointers.fill(nullptr); //main_page_table.pointers.fill(nullptr);
main_page_table.attributes.fill(PageType::Unmapped); //main_page_table.attributes.fill(PageType::Unmapped);
main_page_table.cached_res_count.fill(0); //main_page_table.cached_res_count.fill(0);
} }
void MapMemoryRegion(VAddr base, u32 size, u8* target) { void MapMemoryRegion(VAddr base, u64 size, u8* target) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory); MapPages(base / PAGE_SIZE, size / PAGE_SIZE, target, PageType::Memory);
} }
void MapIoRegion(VAddr base, u32 size, MMIORegionPointer mmio_handler) { void MapIoRegion(VAddr base, u64 size, MMIORegionPointer mmio_handler) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special); MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Special);
@ -120,7 +120,7 @@ void MapIoRegion(VAddr base, u32 size, MMIORegionPointer mmio_handler) {
current_page_table->special_regions.emplace_back(SpecialRegion{base, size, mmio_handler}); current_page_table->special_regions.emplace_back(SpecialRegion{base, size, mmio_handler});
} }
void UnmapRegion(VAddr base, u32 size) { void UnmapRegion(VAddr base, u64 size) {
ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size); ASSERT_MSG((size & PAGE_MASK) == 0, "non-page aligned size: %08X", size);
ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base); ASSERT_MSG((base & PAGE_MASK) == 0, "non-page aligned base: %08X", base);
MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped); MapPages(base / PAGE_SIZE, size / PAGE_SIZE, nullptr, PageType::Unmapped);
@ -222,7 +222,7 @@ void Write(const VAddr vaddr, const T data) {
PageType type = current_page_table->attributes[vaddr >> PAGE_BITS]; PageType type = current_page_table->attributes[vaddr >> PAGE_BITS];
switch (type) { switch (type) {
case PageType::Unmapped: case PageType::Unmapped:
LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u32)data, LOG_ERROR(HW_Memory, "unmapped Write%lu 0x%08X @ 0x%08X", sizeof(data) * 8, (u64)data,
vaddr); vaddr);
return; return;
case PageType::Memory: case PageType::Memory:
@ -304,12 +304,12 @@ u8* GetPhysicalPointer(PAddr address) {
return vaddr ? GetPointer(*vaddr) : nullptr; return vaddr ? GetPointer(*vaddr) : nullptr;
} }
void RasterizerMarkRegionCached(PAddr start, u32 size, int count_delta) { void RasterizerMarkRegionCached(PAddr start, u64 size, int count_delta) {
if (start == 0) { if (start == 0) {
return; return;
} }
u32 num_pages = ((start + size - 1) >> PAGE_BITS) - (start >> PAGE_BITS) + 1; u64 num_pages = ((start + size - 1) >> PAGE_BITS) - (start >> PAGE_BITS) + 1;
PAddr paddr = start; PAddr paddr = start;
for (unsigned i = 0; i < num_pages; ++i, paddr += PAGE_SIZE) { for (unsigned i = 0; i < num_pages; ++i, paddr += PAGE_SIZE) {
@ -368,13 +368,13 @@ void RasterizerMarkRegionCached(PAddr start, u32 size, int count_delta) {
} }
} }
void RasterizerFlushRegion(PAddr start, u32 size) { void RasterizerFlushRegion(PAddr start, u64 size) {
if (VideoCore::g_renderer != nullptr) { if (VideoCore::g_renderer != nullptr) {
VideoCore::g_renderer->Rasterizer()->FlushRegion(start, size); VideoCore::g_renderer->Rasterizer()->FlushRegion(start, size);
} }
} }
void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size) { void RasterizerFlushAndInvalidateRegion(PAddr start, u64 size) {
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be // Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
// null here // null here
if (VideoCore::g_renderer != nullptr) { if (VideoCore::g_renderer != nullptr) {
@ -382,7 +382,7 @@ void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size) {
} }
} }
void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode) { void RasterizerFlushVirtualRegion(VAddr start, u64 size, FlushMode mode) {
// Since pages are unmapped on shutdown after video core is shutdown, the renderer may be // Since pages are unmapped on shutdown after video core is shutdown, the renderer may be
// null here // null here
if (VideoCore::g_renderer != nullptr) { if (VideoCore::g_renderer != nullptr) {
@ -398,7 +398,7 @@ void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode) {
VAddr overlap_end = std::min(end, region_end); VAddr overlap_end = std::min(end, region_end);
PAddr physical_start = TryVirtualToPhysicalAddress(overlap_start).value(); PAddr physical_start = TryVirtualToPhysicalAddress(overlap_start).value();
u32 overlap_size = overlap_end - overlap_start; u64 overlap_size = overlap_end - overlap_start;
auto* rasterizer = VideoCore::g_renderer->Rasterizer(); auto* rasterizer = VideoCore::g_renderer->Rasterizer();
switch (mode) { switch (mode) {

View File

@ -16,10 +16,10 @@ namespace Memory {
* Page size used by the ARM architecture. This is the smallest granularity with which memory can * Page size used by the ARM architecture. This is the smallest granularity with which memory can
* be mapped. * be mapped.
*/ */
const u32 PAGE_SIZE = 0x1000;
const u32 PAGE_MASK = PAGE_SIZE - 1;
const int PAGE_BITS = 12; const int PAGE_BITS = 12;
const size_t PAGE_TABLE_NUM_ENTRIES = 1 << (32 - PAGE_BITS); const u64 PAGE_SIZE = 1 << PAGE_BITS;
const u64 PAGE_MASK = PAGE_SIZE - 1;
const size_t PAGE_TABLE_NUM_ENTRIES = 1ULL << (64 - PAGE_BITS);
/// Physical memory regions as seen from the ARM11 /// Physical memory regions as seen from the ARM11
enum : PAddr { enum : PAddr {
@ -178,17 +178,17 @@ u8* GetPhysicalPointer(PAddr address);
* Adds the supplied value to the rasterizer resource cache counter of each * Adds the supplied value to the rasterizer resource cache counter of each
* page touching the region. * page touching the region.
*/ */
void RasterizerMarkRegionCached(PAddr start, u32 size, int count_delta); void RasterizerMarkRegionCached(PAddr start, u64 size, int count_delta);
/** /**
* Flushes any externally cached rasterizer resources touching the given region. * Flushes any externally cached rasterizer resources touching the given region.
*/ */
void RasterizerFlushRegion(PAddr start, u32 size); void RasterizerFlushRegion(PAddr start, u64 size);
/** /**
* Flushes and invalidates any externally cached rasterizer resources touching the given region. * Flushes and invalidates any externally cached rasterizer resources touching the given region.
*/ */
void RasterizerFlushAndInvalidateRegion(PAddr start, u32 size); void RasterizerFlushAndInvalidateRegion(PAddr start, u64 size);
enum class FlushMode { enum class FlushMode {
/// Write back modified surfaces to RAM /// Write back modified surfaces to RAM
@ -201,12 +201,12 @@ enum class FlushMode {
* Flushes and invalidates any externally cached rasterizer resources touching the given virtual * Flushes and invalidates any externally cached rasterizer resources touching the given virtual
* address region. * address region.
*/ */
void RasterizerFlushVirtualRegion(VAddr start, u32 size, FlushMode mode); void RasterizerFlushVirtualRegion(VAddr start, u64 size, FlushMode mode);
/** /**
* Dynarmic has an optimization to memory accesses when the pointer to the page exists that * Dynarmic has an optimization to memory accesses when the pointer to the page exists that
* can be used by setting up the current page table as a callback. This function is used to * can be used by setting up the current page table as a callback. This function is used to
* retrieve the current page table for that purpose. * retrieve the current page table for that purpose.
*/ */
std::array<u8*, PAGE_TABLE_NUM_ENTRIES>* GetCurrentPageTablePointers(); //std::array<u8*, PAGE_TABLE_NUM_ENTRIES>* GetCurrentPageTablePointers();
} }

View File

@ -18,7 +18,7 @@ void InitMemoryMap();
* @param size The amount of bytes to map. Must be page-aligned. * @param size The amount of bytes to map. Must be page-aligned.
* @param target Buffer with the memory backing the mapping. Must be of length at least `size`. * @param target Buffer with the memory backing the mapping. Must be of length at least `size`.
*/ */
void MapMemoryRegion(VAddr base, u32 size, u8* target); void MapMemoryRegion(VAddr base, u64 size, u8* target);
/** /**
* Maps a region of the emulated process address space as a IO region. * Maps a region of the emulated process address space as a IO region.
@ -26,7 +26,7 @@ void MapMemoryRegion(VAddr base, u32 size, u8* target);
* @param size The amount of bytes to map. Must be page-aligned. * @param size The amount of bytes to map. Must be page-aligned.
* @param mmio_handler The handler that backs the mapping. * @param mmio_handler The handler that backs the mapping.
*/ */
void MapIoRegion(VAddr base, u32 size, MMIORegionPointer mmio_handler); void MapIoRegion(VAddr base, u64 size, MMIORegionPointer mmio_handler);
void UnmapRegion(VAddr base, u32 size); void UnmapRegion(VAddr base, u64 size);
} }