VK_NV_device_diagnostic_checkpoints allows us to push data to a Vulkan
queue and then query it even after a device loss. This allows us to push
the current pipeline object and see what was the call that killed the
device.
Add an extra argument to query device capabilities in the future. The
intention behind this is to use native quads, quad strips, line loops
and polygons if these are released for Vulkan.
The OpenGL spec defines GL_CLAMP's formula similarly to CLAMP_TO_EDGE
and CLAMP_TO_BORDER depending on the filter mode used. It doesn't
exactly behave like this, but it's the closest we can get with what
Vulkan offers without emulating it by injecting shader code.
Introduce a worker thread approach for delegating Vulkan work derived
from dxvk's approach. https://github.com/doitsujin/dxvk
Now that the scheduler is what handles all Vulkan work related to
command streaming, store state tracking in itself. This way we can know
when to reupload Vulkan dynamic state to the queue (since this one is
invalidated between command buffers unlike NVN). We can also store the
renderpass state and graphics pipeline bound to avoid redundant binds
and renderpass begins/ends.
* Kernel: Correct behavior of Address Arbiter threads.
This corrects arbitration threads to behave just like in Horizon OS.
They are added into a container and released according to what priority
they had when added. Horizon OS does not reorder them if their priority
changes.
* Kernel: Address Feedback.
Previously we naively checked for "Intel" in GL_VENDOR, but this
includes both Intel's proprietary driver and the mesa driver. Re-enable
compute shaders for mesa.
Add missing new-line. This caused shaders using local memory and shared
memory to inject a preprocessor GLSL line after an expression (resulting
in invalid code).
It looked like this:
shared uint smem[8];#define LOCAL_MEMORY_SIZE 16
It should look like this (addressed by this commit):
shared uint smem[8];
\#define LOCAL_MEMORY_SIZE 16
Update Sirit and its usage in vk_shader_decompiler. Highlights:
- Implement tessellation shaders
- Implement geometry shaders
- Implement some missing features
- Use native half float instructions when available.
- Setup more features and requirements.
- Improve logging for missing features.
- Collect telemetry parameters.
- Add queries for more image formats.
- Query push constants limits.
- Optionally enable some extensions.
Over the course of the changes to the kernel code, a few includes are no
longer necessary, particularly with the change over to std::shared_ptr
from Boost's intrusive_ptr.
These are fairly trivial to implement, we can just do nothing. This also
provides a spot for us to potentially dump out any relevant info in the
future (e.g. for debugging purposes with homebrew, etc).
While we're at it, we can also correct the names of both of these
supervisor calls.